In: Finance
You decide to invest in a portfolio consisting of 19 percent
Stock X, 40 percent Stock Y, and the remainder in Stock Z. Based on
the following information, what is the standard deviation of your
portfolio?
| State of Economy | Probability of State | Return if State Occurs | ||||||||||
| of Economy | ||||||||||||
| Stock X | Stock Y | Stock Z | ||||||||||
| Normal | .78 | 9.40% | 2.80% | 11.80% | ||||||||
| Boom | .22 | 16.70% | 24.70% | 16.20% | ||||||||
7.22%
6.19%
2.45%
1.84%
4.95%
| Stock X | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability | 
| Normal | 0.78 | 9.4 | 7.332 | -1.606 | 0.00020118 | 
| Growth | 0.22 | 16.7 | 3.674 | 5.694 | 0.000713276 | 
| Expected return %= | sum of weighted return = | 11.01 | Sum=Variance Stock X= | 0.00091 | |
| Standard deviation of Stock X% | =(Variance)^(1/2) | 3.02 | |||
| Stock Y | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability | 
| Normal | 0.78 | 2.8 | 2.184 | -4.818 | 0.001810624 | 
| Growth | 0.22 | 24.7 | 5.434 | 17.082 | 0.006419484 | 
| Expected return %= | sum of weighted return = | 7.62 | Sum=Variance Stock Y= | 0.00823 | |
| Standard deviation of Stock Y% | =(Variance)^(1/2) | 9.07 | |||
| Stock Z | |||||
| Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability | 
| Normal | 0.78 | 11.8 | 9.204 | -0.968 | 7.30879E-05 | 
| Growth | 0.22 | 16.2 | 3.564 | 3.432 | 0.00025913 | 
| Expected return %= | sum of weighted return = | 12.77 | Sum=Variance Stock Z= | 0.00033 | |
| Standard deviation of Stock Z% | =(Variance)^(1/2) | 1.82 | |||
| Covariance Stock X Stock Y: | |||||
| Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
| Normal | 0.78 | -1.6060 | -4.818 | 0.000603541 | |
| Growth | 0.22 | 5.694 | 17.082 | 0.002139828 | |
| Covariance=sum= | 0.002743369 | ||||
| Correlation A&B= | Covariance/(std devA*std devB)= | 1 | |||
| Covariance Stock X Stock Z: | |||||
| Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
| Normal | 0.78 | -1.606 | -0.968 | 0.000121259 | |
| Growth | 0.22 | 5.694 | 3.432 | 0.00042992 | |
| Covariance=sum= | 0.000551179 | ||||
| Correlation A&C= | Covariance/(std devA*std devC)= | 1 | |||
| Covariance Stock Y Stock Z: | |||||
| Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
| Normal | 0.78 | -4.818 | -0.968 | 0.000363778 | |
| Growth | 0.22 | 17.082 | 3.432 | 0.001289759 | |
| Covariance=sum= | 0.001653538 | ||||
| Correlation B&C= | Covariance/(std devB*std devC)= | 1 | |||
| Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
| Variance | =0.19^2*0.03024^2+0.4^2*0.09072^2+0.41^2*0.01823^2+2*(0.19*0.4*0.03024*0.09072*1+0.4*0.41*0.09072*0.01823*1+0.19*0.41*1*0.03024*0.01823) | ||||
| Variance | 0.002451 | ||||
| Standard deviation= | (variance)^0.5 | ||||
| Standard deviation= | 4.95% | ||||