In: Finance
You decide to invest in a portfolio consisting of 19 percent
Stock X, 40 percent Stock Y, and the remainder in Stock Z. Based on
the following information, what is the standard deviation of your
portfolio?
State of Economy | Probability of State | Return if State Occurs | ||||||||||
of Economy | ||||||||||||
Stock X | Stock Y | Stock Z | ||||||||||
Normal | .78 | 9.40% | 2.80% | 11.80% | ||||||||
Boom | .22 | 16.70% | 24.70% | 16.20% | ||||||||
7.22%
6.19%
2.45%
1.84%
4.95%
Stock X | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability |
Normal | 0.78 | 9.4 | 7.332 | -1.606 | 0.00020118 |
Growth | 0.22 | 16.7 | 3.674 | 5.694 | 0.000713276 |
Expected return %= | sum of weighted return = | 11.01 | Sum=Variance Stock X= | 0.00091 | |
Standard deviation of Stock X% | =(Variance)^(1/2) | 3.02 | |||
Stock Y | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability |
Normal | 0.78 | 2.8 | 2.184 | -4.818 | 0.001810624 |
Growth | 0.22 | 24.7 | 5.434 | 17.082 | 0.006419484 |
Expected return %= | sum of weighted return = | 7.62 | Sum=Variance Stock Y= | 0.00823 | |
Standard deviation of Stock Y% | =(Variance)^(1/2) | 9.07 | |||
Stock Z | |||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (C)^2* probability |
Normal | 0.78 | 11.8 | 9.204 | -0.968 | 7.30879E-05 |
Growth | 0.22 | 16.2 | 3.564 | 3.432 | 0.00025913 |
Expected return %= | sum of weighted return = | 12.77 | Sum=Variance Stock Z= | 0.00033 | |
Standard deviation of Stock Z% | =(Variance)^(1/2) | 1.82 | |||
Covariance Stock X Stock Y: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |
Normal | 0.78 | -1.6060 | -4.818 | 0.000603541 | |
Growth | 0.22 | 5.694 | 17.082 | 0.002139828 | |
Covariance=sum= | 0.002743369 | ||||
Correlation A&B= | Covariance/(std devA*std devB)= | 1 | |||
Covariance Stock X Stock Z: | |||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% for C(C) | (A)*(C)*probability | |
Normal | 0.78 | -1.606 | -0.968 | 0.000121259 | |
Growth | 0.22 | 5.694 | 3.432 | 0.00042992 | |
Covariance=sum= | 0.000551179 | ||||
Correlation A&C= | Covariance/(std devA*std devC)= | 1 | |||
Covariance Stock Y Stock Z: | |||||
Scenario | Probability | Actual return% -expected return% For B(B) | Actual return% -expected return% for C(C) | (B)*(C)*probability | |
Normal | 0.78 | -4.818 | -0.968 | 0.000363778 | |
Growth | 0.22 | 17.082 | 3.432 | 0.001289759 | |
Covariance=sum= | 0.001653538 | ||||
Correlation B&C= | Covariance/(std devB*std devC)= | 1 | |||
Variance | =w2A*σ2(RA) + w2B*σ2(RB) + w2C*σ2(RC)+ 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB) + 2*(wA)*(wC)*Cor(RA, RC)*σ(RA)*σ(RC) + 2*(wC)*(wB)*Cor(RC, RB)*σ(RC)*σ(RB) | ||||
Variance | =0.19^2*0.03024^2+0.4^2*0.09072^2+0.41^2*0.01823^2+2*(0.19*0.4*0.03024*0.09072*1+0.4*0.41*0.09072*0.01823*1+0.19*0.41*1*0.03024*0.01823) | ||||
Variance | 0.002451 | ||||
Standard deviation= | (variance)^0.5 | ||||
Standard deviation= | 4.95% |