Question

In: Advanced Math

Find the Fourier series of the following functions f(x) = sinx+x^2+x, −2 < x < 2

Find the Fourier series of the following functions

f(x) = sinx+x^2+x,

−2 < x < 2

Solutions

Expert Solution


Related Solutions

Expand in Fourier series: f(x) = x|x|, -L<x<L, L>0 f(x) = cosx(sinx)^2 , -pi<x<pi f(x) =...
Expand in Fourier series: f(x) = x|x|, -L<x<L, L>0 f(x) = cosx(sinx)^2 , -pi<x<pi f(x) = (sinx)^3, -pi<x<pi
3.2.1. Find the Fourier series of the following functions: (g) | sin x | (h) x...
3.2.1. Find the Fourier series of the following functions: (g) | sin x | (h) x cos x.
Expand in Fourier series: Expand in fourier sine and fourier cosine series of: f(x) = x(L-x),...
Expand in Fourier series: Expand in fourier sine and fourier cosine series of: f(x) = x(L-x),    0<x<L Expand in fourier cosine series: f(x) = sinx, 0<x<pi Expand in fourier series f(x) = 2pi*x-x^2, 0<x<2pi, assuming that f is periodic of period 2pi, that is, f(x+2pi)=f(x)
3. Find the Fourier integral representation of each of the following functions. f(x) = sin(x)/x
3. Find the Fourier integral representation of each of the following functions. f(x) = sin(x)/x
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0,...
Calculate the fourier series of these periodic functions f(x) = cosh(2πax + πa), x ∈ [0, 1) and f(x) = cos(2πax − aπ) x ∈ [0, 1). The period of these functions is 1. 1-periodic
Find the Fourier Series for the function defined over -5 < x < 5 f(x) =...
Find the Fourier Series for the function defined over -5 < x < 5 f(x) = -2 when -5<x<0 and f(x) = 3 when 0<x<5 You can use either the real or complex form but must show work. Plot on Desmos the first 10 terms of the series along with the original function.
Find the Taylor series or polynomial generated by the following functions a. )f(x) √ x centred...
Find the Taylor series or polynomial generated by the following functions a. )f(x) √ x centred at x=4 , of order 3 b.) f(x) cosh x= e^x+e^-x/(2), centred at x=0 c.) f(x) = x tan^-1x^2 , centred at x=0 d.) f(x) = 1/(√1+x^3) , centred at x=0 , of order 4 e.) f(x) = cos(2x+pie/2) centred at x= pie/4
Compute the Maclaurin series for the following functions: (a) f(x) = (2 + x)^5 (b) f(x)...
Compute the Maclaurin series for the following functions: (a) f(x) = (2 + x)^5 (b) f(x) = (x^3) * sin(x^2)
Represent f(x)=sinx as the sum of its Taylor series centered at x=pi/6. Find the radius of...
Represent f(x)=sinx as the sum of its Taylor series centered at x=pi/6. Find the radius of convergence.
Find the Fourier series for the function on the interval (-π,π) f(x) = 1 -sin(x)+3cos(2x) f(x...
Find the Fourier series for the function on the interval (-π,π) f(x) = 1 -sin(x)+3cos(2x) f(x )= cos2(x) f(x) = sin2(x)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT