Question

In: Physics

The figure shows a conical pendulum, in which the bob (the small object at the lower...

The figure shows a conical pendulum, in which the bob (the small object at the lower end of the cord) moves in a horizontal circle at constant speed. (The cord sweeps out a cone as the bob rotates.) The bob has a mass of 0.024 kg, the string has length L = 1.2 m and negligible mass, and the bob follows a circular path of circumference 1.2 m. What are (a) the tension in the string and (b) the period of the motion?

Solutions

Expert Solution


Related Solutions

The figure shows a pendulum of length L = 2.6 m. Its bob (which effectively has...
The figure shows a pendulum of length L = 2.6 m. Its bob (which effectively has all the mass) has speed v0 when the cord makes an angle θ0 = 42° with the vertical. (a) What is the speed of the bob when it is in its lowest position if v0 = 9.1 m/s? What is the least value that v0 can have if the pendulum is to swing down and then up (b) to a horizontal position, and (c)...
The figure shows a pendulum of length L = 2.0 m. Its bob (which effectively has...
The figure shows a pendulum of length L = 2.0 m. Its bob (which effectively has all the mass) has speed v0 when the cord makes an angle θ0 = 32° with the vertical. (a) What is the speed of the bob when it is in its lowest position if v0 = 6.3 m/s? What is the least value that v0 can have if the pendulum is to swing down and then up (b) to a horizontal position, and (c)...
The figure shows a pendulum of length L = 2.6 m. Its bob (which effectively has...
The figure shows a pendulum of length L = 2.6 m. Its bob (which effectively has all the mass) has speed v0 when the cord makes an angle θ0 = 42° with the vertical. (a) What is the speed of the bob when it is in its lowest position if v0 = 9.1 m/s? What is the least value that v0 can have if the pendulum is to swing down and then up (b) to a horizontal position, and (c)...
Consider a conical pendulum with a bob of mass m = 28.0 kg on a string...
Consider a conical pendulum with a bob of mass m = 28.0 kg on a string of length L = 7.00 m that makes an angle of θ = 4.00° with the vertical. a) Draw the direction of the acceleration of the ball b) What force(s) cause this acceleration? c) Determine the centripetal acceleration of the bob. d) Determine the speed of the ball.
Explain the motion of the conical pendulum.
Explain the motion of the conical pendulum.
A simple pendulum consists of a small object of mass m= 0.150 kg suspended from a...
A simple pendulum consists of a small object of mass m= 0.150 kg suspended from a support stand by a light string. The string has a length L= 0.750 m. The string has an initial position given by θ= 65.0° relative to the vertical. The pendulum is released from rest. Air resistance is negligible during the subsequent motion of the pendulum. a)Calculate the work done by gravity on the pendulum as it moves from its initial position to the lowest...
An object at rest explodes into three fragments. The figure shows the momentum vectors of two...
An object at rest explodes into three fragments. The figure shows the momentum vectors of two of the fragments: vector P1 is directed along the px axis and has a magnitude of 67.0 kg m/s. vector P2 is at an angle of 50.0° measured counterclockwise from the positive px axis and has a magnitude of 92.0 kg m/s. What are the px and py components of the momentum of the third fragment?
A small object is 25.0 cm from a diverging lens as shown in the figure. A...
A small object is 25.0 cm from a diverging lens as shown in the figure. A converging lens with a focal length of 12.0 cm is 30.0 cm to the right of the diverging lens. The two-lens system forms a real inverted image 17.0 cm to the right of the converging lens. What is the focal length of the diverging lens? What is the total magnification of the final image?
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 10 cm below yi. (a) What is the frequency of the oscillation? (b) What is the speed of the object when it is 8.1 cm below the...
A massless spring hangs from the ceiling with a small object attached to its lower end....
A massless spring hangs from the ceiling with a small object attached to its lower end. The object is initially held at rest in a position yi such that the spring is at its rest length. The object is then released from yi and oscillates up and down, with its lowest position being 14 cm below yi. (a) What is the frequency of the oscillation? Hz (b) What is the speed of the object when it is 12.0 cm below...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT