Question

In: Advanced Math

Consider n numbers x1, x2, . . . , xn laid out on a circle and some value α.

 

Consider n numbers x1, x2, . . . , xn laid out on a circle and some value α. Consider the requirement that every number equals α times the sum of its two neighbors. For example, if α were zero, this would force all the numbers to be zero.

(a) Show that, no matter what α is, the system has a solution.

(b) Show that if α = 1/2 , then the system has a nontrivial solution.

(c) Show that if α = − 1/2 , then there is a nontrivial solution if and only if n is even.

Solutions

Expert Solution


Related Solutions

Consider n numbers x1, x2, . . . , xn laid out on a circle and...
Consider n numbers x1, x2, . . . , xn laid out on a circle and some value α. Consider the requirement that every number equals α times the sum of its two neighbors. For example, if α were zero, this would force all the numbers to be zero. (a) Show that, no matter what α is, the system has a solution. (b) Show that if α = 1 2 , then the system has a nontrivial solution. (c) Show...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses...
Let X1, X2, . . . , Xn iid∼ N (µ, σ2 ). Consider the hypotheses H0 : µ = µ0 and H1 : µ (not equal)= µ0 and the test statistic (X bar − µ0)/ (S/√ n). Note that S has been used as σ is unknown. a. What is the distribution of the test statistic when H0 is true? b. What is the type I error of an α−level test of this type? Prove it. c. What is...
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a Poisson distribution with unknown mean µ. It is desired to test the following hypotheses H0 : µ = µ0         versus     H1 : µ not equal to µ0 where µ0 > 0 is a given constant. Derive the likelihood ratio test statistic
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for µ1µ2.
Consider the independent observations x1, x2, . . . , xn from the gamma distribution with...
Consider the independent observations x1, x2, . . . , xn from the gamma distribution with pdf f(x) = (1/ Γ(α)β^α)x^(α−1)e ^(−x/β), x > 0 and 0 otherwise. a. Write out the likelihood function b. Write out a set of equations that give the maximum likelihood estimators of α and β. c. Assuming α is known, find the likelihood estimator Bˆ of β. d. Find the expected value and variance of Bˆ
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n,...
Let X1, X2, X3, . . . be independently random variables such that Xn ∼ Bin(n, 0.5) for n ≥ 1. Let N ∼ Geo(0.5) and assume it is independent of X1, X2, . . .. Further define T = XN . (a) Find E(T) and argue that T is short proper. (b) Find the pgf of T. (c) Use the pgf of T in (b) to find P(T = n) for n ≥ 0. (d) Use the pgf of...
Suppose we have a random sample of n observations {x1, x2, x3,…xn}. Consider the following estimator...
Suppose we have a random sample of n observations {x1, x2, x3,…xn}. Consider the following estimator of µx, the population mean. Z = 12x1 + 14x2 + 18x3 +…+ 12n-1xn−1 + 12nxn Verify that for a finite sample size, Z is a biased estimator. Recall that Bias(Z) = E(Z) − µx. Write down a formula for Bias(Z) as a function of n and µx. Is Z asymptotically unbiased? Explain. Use the fact that for 0 < r < 1, limn→∞i=1nri...
Let X1,X2,...,Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood function is...
Let X1,X2,...,Xn be i.i.d. Gamma random variables with parameters α and λ. The likelihood function is difficult to differentiate because of the gamma function. Rather than finding the maximum likelihood estimators, what are the method of moments estimators of both parameters α and λ?
Suppose X1, X2, . . . , Xn is a random sample from N(μ, 16). Find...
Suppose X1, X2, . . . , Xn is a random sample from N(μ, 16). Find the maximum likelihood estimator of the 95th percentile.
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is...
Let x1 > 1 and xn+1 := 2−1/xn for n ∈ N. Show that xn is bounded and monotone. Find the limit. Prove by induction
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT