Question

In: Chemistry

Assuming that the molecular orbital energy level diagram for homonuclear diatomic molecules can be applied to...

Assuming that the molecular orbital energy level diagram for homonuclear diatomic molecules can be applied to heteronuclear diatomic molecules, arrange the NO, NO- and NO+ in order of decreasing bond length, from longest to shortest. Explain why that order is accurate using molecular orbital diagrams and what you know about how bond lengths behave.

Solutions

Expert Solution


Related Solutions

Using the molecular orbital energy ordering for second-row homonuclear diatomic molecules in which the 20 orbitals...
Using the molecular orbital energy ordering for second-row homonuclear diatomic molecules in which the 20 orbitals lie at a lower energy than the 02p, draw the MO energy diagrams and predict the bond order in a molecule or ion with each number of total valence electrons. Will the molecule or ion be diamagnetic or paramagnetic? a) 6 valence electrons b) 9 valence electrons c) 12 valence electrons
Consider the molecular orbital diagram shown below, a diagram that is often applied to the first row diatomic molecules.
Consider the molecular orbital diagram shown below, a diagram that is often applied to the first row diatomic molecules. Note that this diagram comprises orbitals derived from the n = 2 valence shell of orbitals (2s and 2p). Use this diagram to determine (1) if the following diatomic molecules or ions will be diamagnetic (all electrons paired) or paramagnetic (one or more unpaired electrons), and (2) for paramagnetic species, the number of unpaired electrons.O2, N2, CO, NO, NO-, NO+, CN-,...
Compare the energies of molecular orbitals of homonuclear diatomic molecules with the energies of the atomic...
Compare the energies of molecular orbitals of homonuclear diatomic molecules with the energies of the atomic orbitals with which they correlate.     Both bonding and antibonding molecular orbitals lie lower in energy than the atomic orbitals.     Both bonding and antibonding molecular orbitals are higher in energy than the atomic orbitals.     Bonding orbitals are higher and antibonding orbitals are lower in energy than the atomic orbitals.     Bonding orbitals are lower and antibonding orbitals are...
Outline the rules of the building-up principle for homonuclear diatomic molecules.
Outline the rules of the building-up principle for homonuclear diatomic molecules.
9.5 Explain the concepts of the molecular orbital model and apply to diatomic molecules Define diamagnetism...
9.5 Explain the concepts of the molecular orbital model and apply to diatomic molecules Define diamagnetism and paramagnetism Determine if specific ions are paramagnetic or diamagnetic Explain what a molecular orbital is and how it is different from a hybrid orbital Explain the difference between an anti-bonding and a bonding as well as a sigma and pi molecular orbitals. Populate a molecular orbital diagram with the valence electrons of an atom or ion Determine the bond order and magnetic properties...
Prepare a molecular orbital diagram for the BeH2 molecule. Assume in orbital potential energy of 4.0...
Prepare a molecular orbital diagram for the BeH2 molecule. Assume in orbital potential energy of 4.0 eV for the 2p orbitals of Be and -9.3eV for the 2s orbital. Assume that both the 2p and the 2s of Be interact with the two group orbitals of the hydrogens.
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the...
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the ion paramagnetic or diamagnetic? b. What is the bond order in the ion? c. Would these ions have longer, shorter, or the same bond length as their neutral counterpart? d. Would these ions have stronger, weaker, or equal bonding strength as their neutral counterparts
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the...
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the ion paramagnetic or diamagnetic? b. What is the bond order in the ion? c. Would these ions have longer, shorter, or the same bond length as their neutral counterpart? d. Would these ions have stronger, weaker, or equal bonding strength as their neutral counterparts
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the...
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the ion paramagnetic or diamagnetic? b. What is the bond order in the ion? c. Would these ions have longer, shorter, or the same bond length as their neutral counterpart? d. Would these ions have stronger, weaker, or equal bonding strength as their neutral counterparts
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the...
Draw a simple molecular orbital diagram for the following molecules. O22.... N2+.... C22- '''a. Is the ion paramagnetic or diamagnetic? b. What is the bond order in the ion? c. Would these ions have longer, shorter, or the same bond length as their neutral counterpart? d. Would these ions have stronger, weaker, or equal bonding strength as their neutral counterparts
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT