Question

In: Advanced Math

Rankine cycle experiment: 5000ml water consumed in experiment used Time (sec): 1055 Boiler, Temp (c): 167.199...

Rankine cycle experiment:

5000ml water consumed in experiment used

Time (sec): 1055

Boiler, Temp (c): 167.199

Turbine In, Temp (c):109.3

Turbine ex, Temp (c): 97.79

Boiler Pres, (KPa) : 721.315

Turbine In Pres, (KPa): 85.639

Turbine Ex Pres, (KPa): 32.826

Fuel flow, (L/Min):5.842

Generator, (RPM): 1949.185

Voltage (volts): 7.443

Current (Amps): 0.135

Power (Watts): 1.002

Calculate:

1.Mass flow rate of water/ steam in the closed cycle.

2. Specific work generated by the turbine.

3. Power generated by the turbine.

4. Heat rejected to cooling system by the condenser.

5. Specific work into the pump.

6. Heat flux introduced by the boiler

Please Help me, Ive posted this question a few times,and I don't understand why they use turbine inlet pressure instead of the boiler pressure.

Whats also confusing me is how they get h1 ,h2,h3 and h4 from the tables if the figures do not correspond.

Id really appreciate it if someone can properly explain this to me.

Solutions

Expert Solution


Related Solutions

Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure...
Consider a simple ideal Rankine cycle which uses water as the working fluid. The boiler pressure is 6100 kPa and the condenser pressure is 30 kPa. At the turbine inlet, steam is at 480°C. The isentropic efficiency of the turbine is 92 percent. The pump losses are negligible and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the following values. The temperature at the pump inlet....
3.A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa...
3.A simple Rankine cycle uses water as the working fluid. The boiler operates at 6000 kPa and the condenser at 50 kPa. At the entrance to the turbine, the temperature is 450°C. The isentropic efficiency of the turbine is 90 percent, pressure and pump losses are negligible, and the water leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine (a) the rate at which heat is added in the...
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75% Draw and label the T-s diagram (4 points) for this cycle and determine: 1. The cycle’s thermal efficiency (7 points) 2. The mass flow rate of the steam in the boiler...
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa....
Steam leaves the boiler of a 100 MW Rankine cycle power plant at 400°C and 3.5MPa. The Turbine has an isentropic efficiency of 85% and exhausts at 15 kPa. In the condenser, the water is subcooled to 38°C by lake water at 13°C. The pump isentropic efficiency is 75%. 1. Draw and label the T-s diagram for this cycle 2. Determine the cycle’s thermal efficiency 3. Determine the mass flow rate of the steam in the boiler (kg/h) 4. Determine...
A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of...
A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of 5.75MPa, steam enters the turbine at 500°C and expands to 147kPa. If the powerplant is producing 5MW of energy find the following: Enthalpies at each point of the cycle 1,2,3,B (hint: you will have to interpolate horizontally for point 1 and interpolate for the f,g,fg values for point 2) Net work in kj/kg Mass flow rate of throttle steam used by the powerplant Heat...
1. A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure...
1. A steam powerplant operating on an ideal Rankine Cycle is operating at a boiler pressure of 5.75 MPa, steam enters the turbine at 500°C and expands to 147 kPa. If the powerplant is producing 5MW of energy find the following: a. Enthalpies at each point of the cycle 1,2,3,B b. Net work in kj/kg c. Mass flow rate of throttle steam used by the powerplant d. heat added in the boiler e. heat rejected in the condenser f. cycle...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and...
A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 1 psia in the condenser. The turbine inlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency. Use steam tables
An ideal Rankine cycle operates between the pressure limits of 15 MPa in the boiler and...
An ideal Rankine cycle operates between the pressure limits of 15 MPa in the boiler and 50 kPa in the condenser. The boiler generates steam at a mass flow rate of 50 kg/s and it enters the turbine at a temperature of 1100 °C. a) Calculate the net output of the cycle b) Calculate the thermal efficiency of the cycle.
Run No. Cup Temp. (˚C) Time (sec.) 1 C 10 139 1 RT 22 48 1...
Run No. Cup Temp. (˚C) Time (sec.) 1 C 10 139 1 RT 22 48 1 H 46 21 2 C 6 162 2 RT 22 45 2 H 44 20 3 C 8 149 3 RT 22 48 3 H 42 20 Avg. C 8 150 Avg. RT 22 47 Avg. H 44 20.33 Using graphing software such as Excel®, graph the results of Activity 1. Please see the Introduction to Graphing manual for guidance.              a. What are...
A Rankine cycle with reheat produces 1 MW of net power. The boiler operates at 15...
A Rankine cycle with reheat produces 1 MW of net power. The boiler operates at 15 MPa and has an outlet temperature of 800 K. The condenser operates at atmospheric pressure (1 atm). The operating point of this cycle is such that the water exiting the low pressure turbine has no liquid present to prevent damageto the turbine (hint: what does this say about quality at this point?). Assume the pump and second turbine stage are both isentropic, but the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT