Question

In: Physics

An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It...

An α-particle has a charge of +2e and a mass of 6.64 × 10-27 kg. It is accelerated from rest through a potential difference that has a value of 1.81 × 106 V and then enters a uniform magnetic field whose magnitude is 2.63 T. The α-particle moves perpendicular to the magnetic field at all times. What is (a) the speed of the α-particle, (b) the magnitude of the magnetic force on it, and (c) the radius of its circular path?

Solutions

Expert Solution

To calculate the velocity of the alpha particle, we have to use the law of conservation of energy.As the initial velocity of the alpha particle is zero, then we can find the final velocity,

The force on that particle,

The radius of the circular path,


Related Solutions

A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along...
A particle (mass = 6.7 x 10-27 kg, charge = 3.2 x 10-19 C) moves along the positive x axis with a speed of 4.1 x 105 m/s. It enters a region of uniform electric field parallel to its motion and comes to rest after moving 5.0 m into the field. What is the magnitude of the electric field (in N/C) ?
1.) An alpha particle has a mass of 6.42 × 10^−27 kg and bears a double...
1.) An alpha particle has a mass of 6.42 × 10^−27 kg and bears a double elementary positive charge. Such a particle is observed to move through a 5.2 T magnetic field along a circular path of radius 0.19 m. The charge on a proton is 1.60218×10^−19 C. What speed does it have? Answer in units of m/s. 2.) What is its kinetic energy? Answer in units of J. 3.) What potential difference in MV would be required to give...
An unstable particle with a mass equal to 3.34 ✕ 10−27 kg is initially at rest....
An unstable particle with a mass equal to 3.34 ✕ 10−27 kg is initially at rest. The particle decays into two fragments that fly off with velocities of 0.976c and −0.862c, respectively. Find the masses of the fragments. (Hint: Conserve both mass–energy and momentum.) m(0.976c) = kg m(-0.862c) =kg
Q1). A particle, of mass 2.48×10-25 kg, has the same charge as an electron, but positive,...
Q1). A particle, of mass 2.48×10-25 kg, has the same charge as an electron, but positive, moves in a circle of radius 5.82m at constant speed, due to the action a magnetic field of 0.00316 Tesla, directed perpendicular to the plane of the circle. What is the speed of the particle in m/s? Q2). A 19.2m wire is at an angle of 11.4 degrees to magnetic field of 0.00376 T. The force on it is 2.2N. Find the current carried...
One particle has a mass of 3.84 x 10-3 kg and a charge of +8.90 μC....
One particle has a mass of 3.84 x 10-3 kg and a charge of +8.90 μC. A second particle has a mass of 8.33 x 10-3 kg and the same charge. The two particles are initially held in place and then released. The particles fly apart, and when the separation between them is 0.158 m, the speed of the 3.84 x 10-3 kg-particle is 190 m/s. Find the initial separation between the particles.
An unstable particle with a mass equal to 3.34x10^-27 kg is initially at rest. The particle...
An unstable particle with a mass equal to 3.34x10^-27 kg is initially at rest. The particle decays into two fragments that fly off with velocities of 0.981c and -0.863c, respectively. Find the masses of the fragments. (Hint: Conserve both mass-energy and momentum.) m = 0.981c = _______kg m = -0.863c = ______kg
particle X has a charge of -2e. reactions involving this particle has been known to produce...
particle X has a charge of -2e. reactions involving this particle has been known to produce byproducts like neutrons, protons and electrons. how many possible ways could it decay into 2 particles? three particles? four particles? list the particle by products for each case and brieft explain your reasoning.
A deuteron (the nucleus of an isotope of hydrogen) has a mass of 3.34×10−27 kg and...
A deuteron (the nucleus of an isotope of hydrogen) has a mass of 3.34×10−27 kg and a charge of 1.60×10−19 C . The deuteron travels in a circular path with a radius of 7.30 mm in a magnetic field with a magnitude of 2.10 T . A) Find the speed of the deuteron B)Find the time required for it to make 12 of a revolution. C) Through what potential difference would the deuteron have to be accelerated to acquire this...
1. A particle mass 10x10-25 kg and charge +3x10-16 C is projected with a velocity of...
1. A particle mass 10x10-25 kg and charge +3x10-16 C is projected with a velocity of 5x106 m/s in the +x-direction into a uniform magnetic field of 2.0T in the -z direction. Whic of the following is correct? a.) The particle will follow counterclockwise circular path of radius 0.833 mm b.) none of the choices c.) The particle will follow clockwise circular path of radius 0.833 mm d.) The particle will follow an upward path (+y direction) of radius 8.33...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge −6.20 ✕ 10−4 C is at (3.98 m, 0) and particle C of charge 1.25 ✕ 10−4 C is at (0, 3.38 m). (a) What is the x-component of the electric force exerted by A on C? N (b) What is the y-component of the force exerted by A on C? N (c) Find the magnitude of the force exerted by B on C....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT