Question

In: Physics

An unstable particle with a mass equal to 3.34x10^-27 kg is initially at rest. The particle...

An unstable particle with a mass equal to 3.34x10^-27 kg is initially at rest. The particle decays into two fragments that fly off with velocities of 0.981c and -0.863c, respectively. Find the masses of the fragments. (Hint: Conserve both mass-energy and momentum.)

m = 0.981c = _______kg

m = -0.863c = ______kg

Solutions

Expert Solution

According to the law of conservation of linear momentum wehave

               totalinitial momentum before decay = total final momentum afterdecay

Given that total intitial momentum of the system iszero.

Then 0 = m1v1 +m2v2

        (m1)(0.987c) + (m2)(-0.868c) = 0

            0.987m1 = 0.868m2

                    m1 = (0.868 / 0.987)m2

                         = 0.879m2 ....................(1)

Since we have m1 + m2 = 3.34 x10-27 kg

                    0.879m2 + m2 = 3.34 x 10-27 kg

                m2 ( 1 + 0.879) = 3.34 x 10-27 kg

From this we calculate the value of m2.

After getting the value of m2 substitute this valuein the eq(1) we get the value of m1.


Related Solutions

An unstable particle with a mass equal to 3.34 ✕ 10−27 kg is initially at rest....
An unstable particle with a mass equal to 3.34 ✕ 10−27 kg is initially at rest. The particle decays into two fragments that fly off with velocities of 0.976c and −0.862c, respectively. Find the masses of the fragments. (Hint: Conserve both mass–energy and momentum.) m(0.976c) = kg m(-0.862c) =kg
An unstable nucleus with a mass of 16.3 × 10−27 kg initially at rest disintegrates into...
An unstable nucleus with a mass of 16.3 × 10−27 kg initially at rest disintegrates into three particles. One of the particles, of mass 4.9 × 10−27 kg, moves along the positive yaxis with a speed of 4.5 × 106 m/s. Another particle, of mass 8.7 × 10−27 kg, moves along the positive x-axis with a speed of 3.4 × 106 m/s. a) Find the speed of the third particle. Answer in units of m/s. b) At what angle does...
An unstable nucleus with a mass of 16.3 × 10−27 kg initially at rest disintegrates into...
An unstable nucleus with a mass of 16.3 × 10−27 kg initially at rest disintegrates into three particles. One of the particles, of mass 4.9 × 10−27 kg, moves along the positive yaxis with a speed of 4.5 × 106 m/s. Another particle, of mass 8.7 × 10−27 kg, moves along the positive x-axis with a speed of 3.4 × 106 m/s. a) Find the speed of the third particle. Answer in units of m/s. b) At what angle does...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 1.8 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.4 ✕ 106 m/s. Another particle, of mass m2 = 8.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.2 ✕ 106 m/s. Find the magnitude and direction of the velocity of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 1.0 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.8 ✕ 106 m/s. Another particle, of mass m2 = 9.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.8 ✕ 106 m/s. Find the magnitude and direction of the velocity of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 1.0 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.4 ✕ 106 m/s. Another particle, of mass m2 = 7.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.6 ✕ 106 m/s. Find the magnitude and direction of the velocity of...
A ball with a mass of 0.615 kg is initially at rest. It is struck by...
A ball with a mass of 0.615 kg is initially at rest. It is struck by a second ball having a mass of 0.380 kg , initially moving with a velocity of 0.260 m/s toward the right along the x axis. After the collision, the 0.380 kg ball has a velocity of 0.230 m/s at an angle of 37.4 ∘ above the x axis in the first quadrant. Both balls move on a frictionless, horizontal surface. What is the magnitude...
A block of mass m1 = 1 kg is initially at rest at the top of...
A block of mass m1 = 1 kg is initially at rest at the top of an h1 = 1 meter high ramp, see Fig. 2 below. It slides down the frictionless ramp and collides elastically with a block of unknown mass m2, which is initially at rest. After colliding with m2, mass m1 recoils and achieves a maximum height of only h2 = 0.33 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide...
A block of mass 220 kg initially at rest is pushed along the floor by a...
A block of mass 220 kg initially at rest is pushed along the floor by a force F directed at an angle 40o below the positive x-axis. The force pushes against a friction force with coefficient µ = 0.25. Calculate the magnitude of the force F, that will give the block an acceleration of 3.6 m/s2
A block of mass M_2 = 6.0 kg is initially at rest on a level table
A block of mass M_2 = 6.0 kg is initially at rest on a level table. A string of negligible mass is connected to M_2, runs over a friction less pulley, of 2.0 kg mass and 0.1m radius and is attached to a hanging mass M_1 =5.0 kg 3m above the ground as shown in the figure A. The system was released and the velocity of M_1 was 2.7 m/s when it was 2.0 m above the ground as shown...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT