Question

In: Physics

When a body of mass 1.0 kg is suspended from a certain light spring hanging vertically, its length increases by 5 cm

When a body of mass 1.0 kg is suspended from a certain light spring hanging vertically, its length increases by 5 cm. By suspending 2.0 kg block to the spring and if the block is pulled through 10 cm and released, the maximum velocity of it in m/s is approximately

 

Solutions

Expert Solution

Given that

1×g=Kx

3g=K(x+5)

1/3=x/x+5

x=2.5

10=K×2.5×100

K= 400N hm

Now we have to find ω , We have formula which is

ω =√K/m

ω =√400/3

Vmax = Aω

Putting the values and evaluating we will get

Vmax = 10 × 15²√400/3

Vmax = 1.15 m/s

Therefore the maximum velocity will be 1.15m /s


Maximum velocity (Vmax) is 1.15 m/s

Related Solutions

A body whose mass is 1.82 kg is suspended from a spring of negligible mass , and is found to stretch the spring 3.12 cm.
A body whose mass is 1.82 kg is suspended from a spring of negligible mass , and is found to stretch the spring 3.12 cm. (i) What is the force constant of the spring? (ii) What is the period of oscillation of the body, if pulled down and released? (iii) What would be the period of a body weighing 3.63 kg, hanging from the same spring?
A mass m = 1 kg is suspended from a spring that is stretched 1 cm...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm under the influence of the weight of this mass. Now a periodic force is applied external of F (t) = 200 cos (vt) on the mass, which was initially in static balance. Disregarding all friction, get a relationship for position of the mass as a function of time, x (t). Also determine the value of ω which will cause resonance to occur
A 10 10 kilogram object suspended from the end of a vertically hanging spring stretches the...
A 10 10 kilogram object suspended from the end of a vertically hanging spring stretches the spring 9.8 9.8 centimeters. At time ?=0 t = 0 , the resulting mass-spring system is disturbed from its rest state by the force ?(?)=70cos(8?) F ( t ) = 70 cos ( 8 t ) . The force ?(?) F ( t ) is expressed in Newtons and is positive in the downward direction, and time is measured in seconds. a) Determine the...
A 50-gram mass is hanging from a spring whose unstretched length is 10 cm and whose...
A 50-gram mass is hanging from a spring whose unstretched length is 10 cm and whose spring constant is 2.5 N/m. In the list below are described five situations. In some of the situations, the mass is at rest and remains at rest. In other situations, at the instant described, the mass is in the middle of an oscillation initiated by a person pulling the mass downward 5 cm from its equilibrium position and releasing it. Ignore both air resistance...
An ideal spring dangles from the ceiling at its relaxed length of 5 cm. A 3-kg...
An ideal spring dangles from the ceiling at its relaxed length of 5 cm. A 3-kg mass is carefully hung from the end of the spring while the spring is relaxed, and then the mass is released from rest at time t = 0, which begins to stretch the spring. The spring stretches to its maximum length at time t = 130 ms when the mass reaches its lowest point. Then the mass returns upward, shortening the spring. The oscillation...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 6.60 N is applied. A 0.400-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
1. A pendulum is formed by taking a 1.0 kg mass and hanging it from the...
1. A pendulum is formed by taking a 1.0 kg mass and hanging it from the ceiling using a steel wire with a diameter of 1.1 mm. It is observed that the wire stretches by 0.05 mm under the weight of the mass. What is the period of oscillation of the pendulum? 2. In order to study the long-term effects of weightlessness, astronauts in space must be weighed (or at least "massed"). One way in which this is done is...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at...
An ideal spring is in equilibrium, hanging from a ceiling with a 1 kg mass at the end. At rest, the length of the hanging spring is 10 cm. Then, an additional 5 kg block is added to the spring, causing its length at rest to increase to 13 cm. The 5 kg block is then removed. Starting from rest, when the 5 kg block is removed, the spring begins to oscillate. What will the spring’s velocity be, the third...
A 0.112-kg block is suspended from a spring. When a small pebble of mass 31 g...
A 0.112-kg block is suspended from a spring. When a small pebble of mass 31 g is placed on the block, the spring stretches an additional 5.5 cm. With the pebble on the block, the block oscillates with an amplitude of 11 cm. Find the maximum amplitude of oscillation at which the pebble will remain in contact with the block.
A mass of 2 kg is suspended from a spring with known spring constant of 10N/m...
A mass of 2 kg is suspended from a spring with known spring constant of 10N/m and allowed to come to rest. it is then set in motion by giving it an initial velocity of 150 cm/sec. Find an expression for the motion of the mass, assuming no air resistance.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT