Question

In: Physics

A 0.112-kg block is suspended from a spring. When a small pebble of mass 31 g...

A 0.112-kg block is suspended from a spring. When a small pebble of mass 31 g is placed on the block, the spring stretches an additional 5.5 cm. With the pebble on the block, the block oscillates with an amplitude of 11 cm. Find the maximum amplitude of oscillation at which the pebble will remain in contact with the block.

Solutions

Expert Solution


Related Solutions

A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. After t = 0.32 s what is the speed of the block? At t = 0.32 s what is the magnitude of the net force on the...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. What is the spring constant of the spring? 2) What is the oscillation frequency? After t = 0.32 s what is the speed of the block? What...
A block with mass m =7.4 kg is hung from a vertical spring. When the mass...
A block with mass m =7.4 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.21 m. While at this equilibrium position, the mass is then given an initial push downward at v = 5.1 m/s. The block oscillates on the spring without friction. 3)After t = 0.4 s what is the speed of the block? 4)What is the magnitude of the maximum acceleration of the block? 5)At t = 0.4...
A block with mass m =7.5 kg is hung from a vertical spring. When the mass...
A block with mass m =7.5 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.25 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.1 m/s. The block oscillates on the spring without friction. After t = 0.3 s what is the speed of the block? What is the magnitude of the maximum acceleration of the block? At t = 0.3...
A block with mass m =6.5 kg is hung from a vertical spring. When the mass...
A block with mass m =6.5 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.1 m/s. The block oscillates on the spring without friction. 1) What is the spring constant of the spring? N/m 2) What is the oscillation frequency? Hz 3) After t = 0.39 s what is the speed...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass...
A block with mass m =6.7 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.29 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.7 m/s. The block oscillates on the spring without friction. A)What is the spring constant of the spring? B)What is the oscillation frequency? C) After t = 0.32 s what is the speed of the block? D)What...
A mass of 2 kg is suspended from a spring with known spring constant of 10N/m...
A mass of 2 kg is suspended from a spring with known spring constant of 10N/m and allowed to come to rest. it is then set in motion by giving it an initial velocity of 150 cm/sec. Find an expression for the motion of the mass, assuming no air resistance.
A mass m = 1 kg is suspended from a spring that is stretched 1 cm...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm under the influence of the weight of this mass. Now a periodic force is applied external of F (t) = 200 cos (vt) on the mass, which was initially in static balance. Disregarding all friction, get a relationship for position of the mass as a function of time, x (t). Also determine the value of ω which will cause resonance to occur
A body whose mass is 1.82 kg is suspended from a spring of negligible mass , and is found to stretch the spring 3.12 cm.
A body whose mass is 1.82 kg is suspended from a spring of negligible mass , and is found to stretch the spring 3.12 cm. (i) What is the force constant of the spring? (ii) What is the period of oscillation of the body, if pulled down and released? (iii) What would be the period of a body weighing 3.63 kg, hanging from the same spring?
A 0.167-kg frame, when suspended from a coil spring, stretches the spring 0.0400 m. A 0.200-kg...
A 0.167-kg frame, when suspended from a coil spring, stretches the spring 0.0400 m. A 0.200-kg lump of putty is dropped from rest onto the frame from a height of 30.0 cm. Find the maximum distance the frame moves downward from its initial equilibrium position.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT