Question

In: Math

Theorem. If A is an n by n square matrix, then the following statements are equivalent....

Theorem. If A is an n by n square matrix, then the following statements are equivalent.

  1. A is invertible.
  2. The system Av=b has at least one solution for every column-vector b.
  3. The system Av=b has exactly one solution for every column-vector b
  4. The system Av=b has only the trivial solution (0,0,0,...0) ( Homogeneous systems).
  5. The reduced row-echelon form of A is the identity matrix.
  6. A is a product of elementary matrices.

Can you please help me to give some short examples or short proofs or logical arguments for EACh statements. EACH statements from 1-6 please.

Solutions

Expert Solution


Related Solutions

Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric,...
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric, positive semi-definite, and orthogonal. Prove that A is the identity matrix. (b) Suppose that A satisfies A = −A^T . Prove that if λ ∈ C is an eigenvalue of A, then λ¯ = −λ. From now on, we assume that A is idempotent, i.e. A^2 = A. (c) Prove that if λ is an eigenvalue of A, then λ is equal to 0...
Suppose C is a m × n matrix and A is a n × m matrix....
Suppose C is a m × n matrix and A is a n × m matrix. Assume CA = Im (Im is the m × m identity matrix). Consider the n × m system Ax = b. 1. Show that if this system is consistent then the solution is unique. 2. If C = [0 ?5 1 3 0 ?1] and A = [2 ?3   1 ?2    6 10] ,, find x (if it exists) when (a) b =[1...
Why matrix can be multiplied by itself if and only if it is a square matrix?
Why matrix can be multiplied by itself if and only if it is a square matrix?
Prove the following theorem. If n is a positive integer such that n ≡ 2 (mod...
Prove the following theorem. If n is a positive integer such that n ≡ 2 (mod 4) or n ≡ 3 (mod 4), then n is not a perfect square.
Matrix A belongs to an n×n matrix over F. show that there exists a nonzero polynomial...
Matrix A belongs to an n×n matrix over F. show that there exists a nonzero polynomial f(x) belongs to F[x] such that f(A) =0.
Let A be an m × n matrix and B be an m × p matrix....
Let A be an m × n matrix and B be an m × p matrix. Let C =[A | B] be an m×(n + p) matrix. (a) Show that R(C) = R(A) + R(B), where R(·) denotes the range of a matrix. (b) Show that rank(C) = rank(A) + rank(B)−dim(R(A)∩R(B)).
Use this theorem to find the inverse of the given matrix or show that no inverse...
Use this theorem to find the inverse of the given matrix or show that no inverse exists. (If an answer does not exist, enter DNE in any cell.) 1    2    5    1 −1    0    2    1 2    1    −5    0 1    1    2    1
A square matrix A is said to be symmetric if its transpose AT satisfies AT= A,...
A square matrix A is said to be symmetric if its transpose AT satisfies AT= A, and a complex-valued square matrix A is said to be Hermitian if its conjugate transpose AH = (A)T = AT satisfies AH = A. Thus, a real-valued square matrix A is symmetric if and only if it is Hermitian. Which of the following is a vector space? (a) The set of all n xn real-valued symmetric matrices over R. (b) The set of all...
a. Let A be a square matrix with integer entries. Prove that if lambda is a...
a. Let A be a square matrix with integer entries. Prove that if lambda is a rational eigenvalue of A then in fact lambda is an integer. b. Prove that the characteristic polynomial of the companion matrix of a monic polynomial f(t) equals f(t).
Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of...
Prove: An (n × n) matrix A is not invertible ⇐⇒ one of the eigenvalues of A is λ = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT