Question

In: Chemistry

A 10 g object at 50oC is placed in 100 g water at 39.8oC in a...

A 10 g object at 50oC is placed in 100 g water at 39.8oC in a calorimeter. The temperature of the water and the object equilibrated at 40.0oC. Identify the metal.

Please explain this. Thanks!

Solutions

Expert Solution

heat lose of metal                             =                                heat gain of water

mct                                               =                                 mct

10*c*(50-40)                                    =                                  100*4.184*(40-39.8)

                         c                             = 0.84J/g-c0  

                          metal specific heat = 0.84J/g-c0 . It is aluminium metal


Related Solutions

A 100 g piece of granite and a 100 g piece of lead are placed in...
A 100 g piece of granite and a 100 g piece of lead are placed in an oven that is at 100°C. The initial temperature of the pieces are 25°C. After a couple of minutes, neither one is at 100°C, but which one is warmer? Which one will reach 100°C first? How much energy will it take for both of the objects to reach 100°C?
A 10 g ice cube at 0oC is melted in 100 g water initially at 20oC....
A 10 g ice cube at 0oC is melted in 100 g water initially at 20oC. The equilibrium temperature of the mixture is 10.93oC. Calculate: a) The heat lost by the water. b) The heat gained by the melted water of the ice cube. c) The heat absorbed by the ice to achieve melting.
1. A 100 g ice cube at -10?C is placed in an aluminum cup whose initial...
1. A 100 g ice cube at -10?C is placed in an aluminum cup whose initial temperature is 70?C. The system comes to an equilibrium temperature of 20?C. What is the mass of the cup in kg. 2.Radiation from the head is a major source of heat loss from the human body. Model a head as a 20-cm-diameter, 20-cm-tall cylinder with a flat top.If the body's surface temperature is 36 ?C , what is the net rate of heat loss...
a) The focal length of a converging lens is 35 cm. An object is placed 100...
a) The focal length of a converging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. b) The focal length of a converging lens is 35 cm. An object is placed 30 cm in front of the lens. Describe the image. c) The focal length of a diverging lens is 35 cm. An object is placed 100 cm in front of the lens. Describe the image. d) The focal length of...
A 190 g piece of ice at 0°C is placed in 400 g of water at...
A 190 g piece of ice at 0°C is placed in 400 g of water at 24°C. The system is in a container of negligible heat capacity and is insulated from its surroundings. (a) What is the final equilibrium temperature of the system? °C (b) How much of the ice melts? g
Suppose that 23.21 g of ice at -11.8°C is placed in 61.33 g of water at...
Suppose that 23.21 g of ice at -11.8°C is placed in 61.33 g of water at 93.0°C in a perfectly insulated vessel. Calculate the final temperature. (The molar heat capacity for ice is 37.5 J K-1 mol-1 and that for liquid water is 75.3 J K-1 mol-1. The molar enthalpy of fusion for ice is 6.01 kJ/mol. You must answer in Kelvin, not °C.)
Suppose 28.0 g of ice at -10.0∘C is placed into 300.0 g of water in a...
Suppose 28.0 g of ice at -10.0∘C is placed into 300.0 g of water in a 200.0-g copper calorimeter. The final temperature of the water and copper calorimeter is 18.0∘C. 1) What was the initial common temperature of the water and copper? (Express your answer to three significant figures.)
Suppose that 25.14 g of ice at -8.7°C is placed in 69.18 g of water at...
Suppose that 25.14 g of ice at -8.7°C is placed in 69.18 g of water at 98.1°C in a perfectly insulated vessel. Calculate the final temperature. (The molar heat capacity for ice is 37.5 J K-1 mol-1 and that for liquid water is 75.3 J K-1 mol-1. The molar enthalpy of fusion for ice is 6.01 kJ/mol. You must answer in Kelvin, not °C.)
A 31 g ice cube at -15.0oC is placed in 139 g of water at 48.0oC....
A 31 g ice cube at -15.0oC is placed in 139 g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
A 26 g ice cube at -15.0oC is placed in 204 g of water at 48.0oC....
A 26 g ice cube at -15.0oC is placed in 204 g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT