Question

In: Advanced Math

Let {Kn : n ∈ N} be a collection of nonempty compact subsets of R N...

Let {Kn : n ∈ N} be a collection of nonempty compact subsets of R N such that for all n, Kn+1 ⊂ Kn. Show that K = T∞ n=1 Kn is compact. Can K ever be the empty set?

Solutions

Expert Solution


Related Solutions

Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there...
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there exists a point x_0 ∈ S which is “closest” to p. That is, prove that there exists x0 ∈ S such that |x_0 − p| is minimal.
Prove that the union of a finite collection of compact subsets is compact
Prove that the union of a finite collection of compact subsets is compact
Let A ⊂ R be a nonempty discrete set a. Show that A is at most...
Let A ⊂ R be a nonempty discrete set a. Show that A is at most countable b. Let f: A →R be any function, and let p ∈ A be any point. Show that f is continuous at p
Let Ω be any set and let F be the collection of all subsets of Ω...
Let Ω be any set and let F be the collection of all subsets of Ω that are either countable or have a countable complement. (Recall that a set is countable if it is either finite or can be placed in one-to-one correspondence with the natural numbers N = {1, 2, . . .}.) (a) Show that F is a σ-algebra. (b) Show that the set function given by μ(E)= 0 if E is countable ; μ(E) = ∞ otherwise...
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Let S(n) be the number of subsets of {1,2,...,n} having the following property: there are no...
Let S(n) be the number of subsets of {1,2,...,n} having the following property: there are no three elements in the subset that are consecutive integers. Find a recurrence for S(n) and explain in words why S(n) satisfies this recurrence
Let (E,d) be a metric space and K, K' disjoint compact subsets of E. Prove the...
Let (E,d) be a metric space and K, K' disjoint compact subsets of E. Prove the existence of disjoint open sets U and U' containing K and K' respectively.
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X...
Definition 1 (Topological space). Let X be a set. A collection O of subsets of X is called a topology on the set X if the following properties are satisfied: (1) emptyset ∈ O and X ∈ O. (2) For all A,B ∈ O, we have A∩B ∈ O (stability under intersection). (3) For all index sets I, and for all collections {Ui}i∈I of elements of O (i.e., Ui ∈ O for all i ∈ I), we have U i∈I...
Let A and B be two non empty bounded subsets of R: 1) Let A +B...
Let A and B be two non empty bounded subsets of R: 1) Let A +B = { x+y/ x ∈ A and y ∈ B} show that sup(A+B)= sup A + sup B 2) For c ≥ 0, let cA= { cx /x ∈ A} show that sup cA = c sup A hint:( show c supA is a U.B for cA and show if l < csupA then l is not U.B)
Let R be a ring and n ∈ N. Let S = Mn(R) be the ring...
Let R be a ring and n ∈ N. Let S = Mn(R) be the ring of n × n matrices with entries in R. a) i) Let T be the subset of S consisting of the n × n diagonal matrices with entries in R (so that T consists of the matrices in S whose entries off the leading diagonal are zero). Show that T is a subring of S. We denote the ring T by Dn(R). ii). Show...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT