Question

In: Physics

Let A ⊂ R be a nonempty discrete set a. Show that A is at most...

Let A ⊂ R be a nonempty discrete set

a. Show that A is at most countable

b. Let f: A →R be any function, and let p ∈ A be any point. Show that f is continuous at p

Solutions

Expert Solution

NOTE:PLEASE GIVE UP VOTE IF YOU LIKE MY ANSWER. IT HELPS ME A LOT THANK YOU.


Related Solutions

Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there...
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there exists a point x_0 ∈ S which is “closest” to p. That is, prove that there exists x0 ∈ S such that |x_0 − p| is minimal.
Let A = {a1, a2, a3, . . . , an} be a nonempty set of...
Let A = {a1, a2, a3, . . . , an} be a nonempty set of n distinct natural numbers. Prove that there exists a nonempty subset of A for which the sum of its elements is divisible by n.
The goal is to show that a nonempty subset C⊆R is closed iff there is a...
The goal is to show that a nonempty subset C⊆R is closed iff there is a continuous function g:R→R such that C=g−1(0). 1) Show the IF part. (Hint: explain why the inverse image of a closed set is closed.) 2) Show the ONLY IF part. (Hint: you may cite parts of Exercise 4.3.12 if needed.)
Let {Kn : n ∈ N} be a collection of nonempty compact subsets of R N...
Let {Kn : n ∈ N} be a collection of nonempty compact subsets of R N such that for all n, Kn+1 ⊂ Kn. Show that K = T∞ n=1 Kn is compact. Can K ever be the empty set?
let G be a simple graph. show that the relation R on the set of vertices...
let G be a simple graph. show that the relation R on the set of vertices of G such that URV if and only if there is an edge associated with (u,v) is a symmetric irreflexive relation on G
Let f : [a, b] → R be a monotone function. Show that the discontinuity set...
Let f : [a, b] → R be a monotone function. Show that the discontinuity set Disc(f) is countable.
Determine if there exist a nonempty set S with operation ⋆ on S and a nonempty...
Determine if there exist a nonempty set S with operation ⋆ on S and a nonempty set S′ ⊂ S, which is closed with respect to ⋆, satisfying the following properties. 1) S has identity e with respect to ⋆. ′ 2) e ∈/ S . 3) S′ has an identity with respect to ⋆.
Let (F, <) be an ordered field, let S be a nonempty subset of F, let...
Let (F, <) be an ordered field, let S be a nonempty subset of F, let c ∈ F, and for purposes of this problem let cS = {cx | x ∈ S}. (Do not use this notation outside this problem without defining what you mean by the notation.) Assume that c > 0. (i) Show that an element b ∈ F is an upper bound for S if and only if cb is an upper bound for cS. (ii)...
1) Show that if A is an open set in R and k ∈ R \...
1) Show that if A is an open set in R and k ∈ R \ {0}, then the set kA = {ka | a ∈ A} is open.
Let x be a set and let R be a relation on x such x is...
Let x be a set and let R be a relation on x such x is simultaneously reflexive, symmetric, and antisymmetric. Prove equivalence relation.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT