Question

In: Statistics and Probability

Exercise 3 The data in the table represent the "Exam Scores" for two random samples of...

Exercise 3

The data in the table represent the "Exam Scores" for two random samples of students. The first group of n1 = 6 students were under active-learning course, and the second group of n2 = 6 students were under traditional lecturing. Note that the standard deviations in the Active group is s1= 3.43 and in the Traditional group is s2 = 3.03.

Active learning

Traditional learning

0

7

5

0

7

8

8

2

0

4

3

3

Please answer the following questions underneath each question.

1. Which test is appropriate to compare the Exam-Scores in the two groups of students?

Answer:

2. Conduct the steps of this test

(please enumerate and write all the steps of your answer below)

Step 1:

3. State your conclusion in the context of this study

Solutions

Expert Solution


Related Solutions

Exercise 3 The data in the table represent the "Exam Scores" for two random samples of...
Exercise 3 The data in the table represent the "Exam Scores" for two random samples of students. The first group of = 6 students were under active-learning course, and the second group of = 6 students were under traditional lecturing. Note that the standard deviations in the Active group is = 3.43 and in the Traditional group is = 3.03. Active learning Traditional learning 0 7 5 0 7 8 8 2 0 4 3 3 Please answer the following...
The two data sets in the table below are dependent random samples. The population of (...
The two data sets in the table below are dependent random samples. The population of ( x − y ) (x-y) differences is approximately normally distributed. A claim is made that the mean difference ( x − y ) (x-y) is less than -31.4. X 25 32 48 37 39 34 37 Y 73 64 66 80 78 67 84 For each part below, enter only a numeric value in the answer box. For example, do not type "z ="...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.9 6.4 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.7 5.2 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.6 1.9 1.4 1.5 1.5 1.6...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.9 6.1 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.9 5.1 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.5 1.9 1.4 1.5 1.5 1.6...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.6 6.3 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.9 5.2 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.5 1.9 1.4 1.5 1.5 1.6...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.3 5.7 6.5 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.8 5.2 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.5 1.7 1.4 1.5 1.5 1.6...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.6 6.2 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.7 5.1 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.6 1.9 1.4 1.5 1.5 1.6...
The following data represent petal lengths (in cm) for independent random samples of two species of...
The following data represent petal lengths (in cm) for independent random samples of two species of Iris. Petal length (in cm) of Iris virginica: x1; n1 = 35 5.1 5.8 6.5 6.1 5.1 5.5 5.3 5.5 6.9 5.0 4.9 6.0 4.8 6.1 5.6 5.1 5.6 4.8 5.4 5.1 5.1 5.9 5.2 5.7 5.4 4.5 6.4 5.3 5.5 6.7 5.7 4.9 4.8 5.9 5.1 Petal length (in cm) of Iris setosa: x2; n2 = 38 1.6 1.8 1.4 1.5 1.5 1.6...
Problem 1 The following table lists data on the participation scores and midterm exam scores for...
Problem 1 The following table lists data on the participation scores and midterm exam scores for 23 students who took the Accounting Theory class in Spring 2019. Student Number Participation Score Midterm Score 1 5 75 2 6.5 84 3 6.5 73 4 7 96 5 7.5 83 6 7.5 88 7 7.5 75 8 8 75 9 8.5 82.5 10 8.5 89 11 8.5 90 12 8.5 91 13 9 92 14 9 81.5 15 9 95 16 9...
Given in the table are the course evaluation scores for random samples of male professors and...
Given in the table are the course evaluation scores for random samples of male professors and female professors. Assume that the two samples are selected from normal distributed populations and do not assume that the population standard deviations are equal. Use 0.05 significance level to test the claim that the male professors and female professors course evaluation scores are from the population with the same mean. Let the male professor as the first population. Mean Standard deviation Simple size Male...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT