In: Math
The following data represent petal lengths (in cm) for independent random samples of two species of Iris.
Petal length (in cm) of Iris virginica: x1; n1 = 35
5.3 | 5.6 | 6.3 | 6.1 | 5.1 | 5.5 | 5.3 | 5.5 | 6.9 | 5.0 | 4.9 | 6.0 | 4.8 | 6.1 | 5.6 | 5.1 |
5.6 | 4.8 | 5.4 | 5.1 | 5.1 | 5.9 | 5.2 | 5.7 | 5.4 | 4.5 | 6.4 | 5.3 | 5.5 | 6.7 | 5.7 | 4.9 |
4.8 | 5.9 | 5.1 |
Petal length (in cm) of Iris setosa: x2; n2 = 38
1.4 | 1.6 | 1.4 | 1.5 | 1.5 | 1.6 | 1.4 | 1.1 | 1.2 | 1.4 | 1.7 | 1.0 | 1.7 | 1.9 | 1.6 | 1.4 |
1.5 | 1.4 | 1.2 | 1.3 | 1.5 | 1.3 | 1.6 | 1.9 | 1.4 | 1.6 | 1.5 | 1.4 | 1.6 | 1.2 | 1.9 | 1.5 |
1.6 | 1.4 | 1.3 | 1.7 | 1.5 | 1.6 |
(a) Use a calculator with mean and standard deviation keys to calculate x1, s1, x2, and s2. (Round your answers to two decimal places.)
x1 = | |
s1 = | |
x2 = | |
s2 = |
(b) Let μ1 be the population mean for
x1 and let μ2 be the
population mean for x2. Find a 99% confidence
interval for μ1 − μ2.
(Round your answers to two decimal places.)
lower limit | |
upper limit |
Values ( X ) | Σ ( Xi- X̅ )2 | Values ( Y ) | Σ ( Yi- Y̅ )2 | |
5.3 | 0.0356 | 1.4 | 0.0067 | |
5.6 | 0.0124 | 1.6 | 0.014 | |
6.3 | 0.6584 | 1.4 | 0.0067 | |
6.1 | 0.3738 | 1.5 | 0.0003 | |
5.1 | 0.151 | 1.5 | 0.0003 | |
5.5 | 0.0001 | 1.6 | 0.014 | |
5.3 | 0.0356 | 1.4 | 0.0067 | |
5.5 | 0.0001 | 1.1 | 0.1456 | |
6.9 | 1.992 | 1.2 | 0.0793 | |
5 | 0.2387 | 1.4 | 0.0067 | |
4.9 | 0.3464 | 1.7 | 0.0477 | |
6 | 0.2615 | 1 | 0.2319 | |
4.8 | 0.4742 | 1.7 | 0.0477 | |
6.1 | 0.3738 | 1.9 | 0.1751 | |
5.6 | 0.0124 | 1.6 | 0.014 | |
5.1 | 0.151 | 1.4 | 0.01 | |
5.6 | 0.0124 | 1.5 | 0.0003 | |
4.8 | 0.4742 | 1.4 | 0.0067 | |
5.4 | 0.0078 | 1.2 | 0.0793 | |
5.1 | 0.151 | 1.3 | 0.033 | |
5.1 | 0.151 | 1.5 | 0.0003 | |
5.9 | 0.1692 | 1.3 | 0.033 | |
5.2 | 0.0833 | 1.6 | 0.014 | |
5.7 | 0.0447 | 1.9 | 0.1751 | |
5.4 | 0.0078 | 1.4 | 0.0067 | |
4.5 | 0.9773 | 1.6 | 0.014 | |
6.4 | 0.8306 | 1.5 | 0.0003 | |
5.3 | 0.0356 | 1.4 | 0.0067 | |
5.5 | 0.0001 | 1.6 | 0.014 | |
6.7 | 1.4675 | 1.2 | 0.0793 | |
5.7 | 0.0447 | 1.9 | 0.1751 | |
4.9 | 0.3464 | 1.5 | 0.0003 | |
4.8 | 0.4742 | 1.6 | 0.014 | |
5.9 | 0.1692 | 1.4 | 0.0067 | |
5.1 | 0.151 | 1.3 | 0.033 | |
1.7 | 0.0477 | |||
1.5 | 0.0003 | |||
1.6 | 0.014 | |||
Total | 192.1 | 10.715 | 56.3 | 1.5572 |
Mean X̅ = Σ Xi / n
X̅ = 192.1 / 35 = 5.49
Sample Standard deviation SX = √ ( (Xi - X̅
)2 / n - 1 )
SX = √ ( 10.7155 / 35 -1 ) = 0.56
Mean Y̅ = ΣYi / n
Y̅ = 56.3 / 38 = 1.48
Sample Standard deviation SY = √ ( (Yi - Y̅
)2 / n - 1 )
SY = √ ( 1.5572 / 38 -1) = 0.21
Part a)
X1 = 5.49
S1 = 0.56
X2 = 1.48
S2 = 0.21
Part b)
Confidence interval :-
t(α/2, DF) = t(0.01 /2, 42 ) = 2.698
DF = 42
Lower Limit =
Lower Limit = 3.74
Upper Limit =
Upper Limit = 4.28
99% Confidence interval is ( 3.74 , 4.28
)