In: Math
Find the center, vertices, foci, and the equations of the asymptotes of the hyperbola. (If an answer does not exist, enter DNE.)
x2 − 2.25y2 + 22.5y − 92.25 = 0
Find the center, vertices, foci, and the equations of the asymptotes of the hyperbola. (If an answer does not exist, enter DNE.)
x^2 − 2.25y^2 + 22.5y − 92.25 = 0
x^2 − 2.25y^2 + 22.5y = 92.25
x^2 − 2.25(y^2 -10y) = 92.25
x^2 − 2.25(y^2 -10y+25) = 92.25 - (2.25 x 25)
x^2 − 2.25(y-5)^2 = 92.25 - 56.25
x^2 − 2.25(y-5)^2 = 36
Divide each term by 36,
(x^2/36) − (2.25/36)(y-5)^2 = 36/36
(x^2/36) − (y-5)^2 /16 = 1
is equivalent to
For a hyperbola with standard form of equation
It is a horizontal parabola with the following characteristics mainly,
Center : (h,k)
Length of transverse axis : 2a
Length of conjugate axis : 2b
Vertices : (h+a,k) (h-a,k)
Co-vertices : (h,k+b) (h,k-b)
a^2 + b^2 = c^2
Foci : (h+c,k) (h-c,k)
Equations of asymptotes : (y-k) = ±(b/a) (x-h)
a : 6, b : 4, c : sqrt 52 or 2sqrt13, h : 0, k : 5
Center : (0,5)
Vertices : (-6,5) (6,5)
Foci : (-2sqrt13,5) (2sqrt13,5)
Equations of asymptotes : (y-5) = ±(4/6)(x)
(y-5) = ±(2/3)(x)
y = (2/3) x + 5
y = (-2/3) x + 5