Question

In: Statistics and Probability

The Hiatus retail outlet takes a random sample of 25 customers from a segment population of...

  1. The Hiatus retail outlet takes a random sample of 25 customers from a segment population of 1,000 with a mean average transaction size of $80 normally distributed with a known population standard deviation of $20 per transaction. Find The 90% confidence interval for transaction size, and The 95% confidence interval for transaction size, and The 99% confidence interval for transaction size. What do these results indicate for management?

Solutions

Expert Solution

The 90%, 95%, 99% CI are as follows

The all three confidence interval contains the mean value 80 .

Based on the confidence interval the mean average size is 80 is true.

As we go from 90%, 95%, 99% the confidence interval becomes wider.

99% CI is most wider out of them.

Dear student,
I am waiting for your feedback. I have given my 100% to solve your queries. If you satisfied with my answer then please please like this.
Thank You


Related Solutions

An investigator takes a random sample of n people from a certain population to obtain the...
An investigator takes a random sample of n people from a certain population to obtain the proportion p (hitherto unknown to the researcher) of smokers. Calculate the sample size you should take to ensure that the proportion of smokers does not differ from the true p-value by more than 0.01 with a probability of at least 0.95 using: a) Chebyshev´s inequality b) Central limit theorem Compare both values of n obtained, what can you conclude about it?
An investigator takes a random sample of n people from a certain population to obtain the...
An investigator takes a random sample of n people from a certain population to obtain the proportion p (hitherto unknown to the researcher) of smokers. Calculate the sample size you should take to ensure that the proportion of smokers does not differ from the true p-value by more than 0.01 with a probability of at least 0.95 using: b) Central limit theorem
(1) Suppose a population numbers in the millions. If one takes a random sample from that...
(1) Suppose a population numbers in the millions. If one takes a random sample from that population of an appropriate size to meet normality assumptions, the mean of the sample will be the same as the mean of the population. Select one: a. always true b. always false c. may be true, but unlikely d. may be false, but unlikely (2) The mode of a probability distribution is the least likely outcome. Select one: a. TRUE b. FALSE (3) “I...
A simple random sample of 25 observations will be taken from a population that is assumed...
A simple random sample of 25 observations will be taken from a population that is assumed to be normal with a standard deviation of 37. We would like to test the alternative hypothesis that the standard deviation is actually more than 37. If the sample standard deviation is 40 or more, then the null hypothesis will be rejected (this called a decision rule). What significance level would this decision rule cause? If the population standard deviation is really 42, what...
a. A random sample of 25 is taken from a normal distribution with population mean =...
a. A random sample of 25 is taken from a normal distribution with population mean = 62, and population standard deviation = 7. What is the margin of error for a 90% confidence interval? b. Repeat the last problem if the standard deviation is unknown, given that the sample standard deviation is S=5.4
A random sample from a normal population yields the following 25 values:
A random sample from a normal population yields the following 25 values:                       90 87 121 96 106 107 89 107 83 92                       117 93 98 120 97 109 78 87 99 79                        104 85 91 107 89a. Calculate an unbiased estimate of the population variance.b. Give approximate 99% confidence interval for the population variance.c. Interpret your results and state any assumptions you made in order to solve the problem.  
A simple random sample of 25 items from a normally distributed population resulted in a sample...
A simple random sample of 25 items from a normally distributed population resulted in a sample mean of 80 and a sample standard deviation of s=7.5. Construct a 95% confidence interval for the population mean.
Suppose a random sample of 25 is drawn from a population whose standard deviation is unknown....
Suppose a random sample of 25 is drawn from a population whose standard deviation is unknown. If the sample mean is 125 and the sample standard deviation is 10, the 90% confidence interval to estimate the population mean is between
A random sample of n = 25 observations is taken from a N(µ, σ ) population....
A random sample of n = 25 observations is taken from a N(µ, σ ) population. A 95% confidence interval for µ was calculated to be (42.16, 57.84). The researcher feels that this interval is too wide. You want to reduce the interval to a width at most 12 units. a) For a confidence level of 95%, calculate the smallest sample size needed. b) For a sample size fixed at n = 25, calculate the largest confidence level 100(1 −...
A random sample of 25 items is drawn from a population whose standard deviation is unknown....
A random sample of 25 items is drawn from a population whose standard deviation is unknown. The sample mean (x-bar) is 850. Construct a confidence interval with 95% confidence for the different values of s. Do not forget to use the t distribution in this case. a. Assume s = 15. b. Assume s = 30. c. Assume s = 60. d. Describe how the confidence interval changes as s increases.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT