In: Statistics and Probability
An investigator takes a random sample of n people from a certain population to obtain the proportion p (hitherto unknown to the researcher) of smokers. Calculate the sample size you should take to ensure that the proportion of smokers does not differ from the true p-value by more than 0.01 with a probability of at least 0.95 using:
b) Central limit theorem
ANSWER:
b)
sample proportion ,   p̂ =
   0.5          
           
   
sampling error ,    E =   0.01  
           
           
Confidence Level ,   CL=   0.95  
           
           
          
           
           
alpha =   1-CL =   0.05  
           
           
Z value =    Zα/2 =    1.960   [excel
formula =normsinv(α/2)]      
           
   
          
           
           
Sample Size,n = (Z / E)² * p̂ * (1-p̂) = (  
1.960   /   0.01   ) ² *  
0.50   * ( 1 -   0.50   ) =
   9603.6
          
           
           
          
           
           
so,Sample Size required=      
9604      
Sample size for a is greater than b
NOTE:: I HOPE THIS ANSWER IS HELPFULL TO YOU......**PLEASE SUPPORT ME WITH YOUR RATING......
**PLEASE GIVE ME "LIKE".....ITS VERY IMPORTANT FOR,ME......PLEASE SUPPORT ME .......THANK YOU