In: Statistics and Probability
Infant Mortality(deaths per thousand births) | %age adult literacy | %age finishing primary school | GNP per capita | Predictions | Residuals | Residuals^2 | |
Cuba | 18 | 98 | 98 | 2000 | 0 | 18 | 324 |
Sri Lanka | 20 | 85 | 92 | 3300 | 0 | 20 | 400 |
Costa Rica | 19 | 94 | 84 | 5800 | 0 | 19 | 361 |
Vietnam | 44 | 85 | 58 | 600 | 0 | 44 | 1936 |
China | 54 | 80 | 86 | 2400 | 0 | 54 | 2916 |
South Africa | 56 | 76 | 68 | 4000 | 0 | 56 | 3136 |
Saudi Arabia | 38 | 59 | 68 | 11000 | 0 | 38 | 1444 |
Brazil | 60 | 78 | 56 | 5600 | 0 | 60 | 3600 |
Zimbawe | 68 | 82 | 76 | 1800 | 0 | 68 | 4624 |
Morocco | 68 | 42 | 76 | 3400 | 0 | 68 | 4624 |
Pakistan | 98 | 36 | 38 | 2100 | 0 | 98 | 9604 |
Nigeria | 86 | 44 | 56 | 1600 | 0 | 86 | 7396 |
Using Excel
data -> data analysis -> regression
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.919743 | |||||
R Square | 0.845926 | |||||
Adjusted R Square | 0.788149 | |||||
Standard Error | 11.93399 | |||||
Observations | 12 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 3 | 6255.555 | 2085.185 | 14.64108 | 0.001298 | |
Residual | 8 | 1139.361 | 142.4202 | |||
Total | 11 | 7394.917 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 154.2055 | 16.15218 | 9.547035 | 1.2E-05 | 116.9585 | 191.4525 |
%age adult literacy | -0.67719 | 0.228723 | -2.96074 | 0.018126 | -1.20463 | -0.14975 |
%age finishing primary school | -0.5982 | 0.275808 | -2.16889 | 0.061925 | -1.23421 | 0.037816 |
GNP per capita | -0.00293 | 0.00129 | -2.27093 | 0.052813 | -0.0059 | 4.52E-05 |
Infant mortality rate^ = 154.2055 -0.67719 % age adult literacy -0.5982 %age finishing primary school - 0.00293 GNP per capita
slope is interpreted as when we change independent variable(x) by 1 unit, on average dependent variable(y) will change by slope units
hence when % age adult literacy increase by 1, on average Infant mortality rate decreases by 0.67719 unit,
similarly others
standard error = 11.93399
this means on average predicted value will differ from actual value by 11.934 unit