In: Statistics and Probability
In the following problem:
1. Determine the value of the margin of error ( E ) 2. Construct
the confidence interval. 3. Write a statement that correctly
interprets the confidence interval.
From a Prince Market Research poll in which randomly chosen people
were asked if they felt that U.S. nuclear weapons made them feel
safer the following data was gathered. Construct a 95% confidence
interval for the proportion of all people living in the United
States who felt nuclear weapons made them feel safer.
n = 1800 x = 1543 who said “yes”.   
2. A Consumer Reports Research Center randomly surveyed 1000
women to determine what proportion of women purchase books online.
Out of 1000 women, 788 reported that they purchase books
online.
a. Construct a 90% confidence interval for the true proportion of
all women that purchase books online. Write a sentence that
correctly interprets the confidence interval.
b. Can we safely conclude that at least 25% of all women purchase
books online? Why or why not?
1)
Level of Significance,   α =   
0.05          
Number of Items of Interest,   x =  
1543          
Sample Size,   n =    1800  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.857          
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0082          
margin of error , E = Z*SE =    1.960  
*   0.0082   =   0.0162
---------
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.857  
-   0.0162   =   0.8411
Interval Upper Limit = p̂ + E =   0.857  
+   0.0162   =   0.8734
          
       
95%   confidence interval is (  
0.841   < p <    0.873  
)
------
we are 95% confident that true proportion of all people living in the United States who felt nuclear weapons made them feel safer lies within confidence interval.
====================
2)
a)
Level of Significance,   α =   
0.10          
Number of Items of Interest,   x =  
788          
Sample Size,   n =    1000  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.788          
z -value =   Zα/2 =    1.645   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0129          
margin of error , E = Z*SE =    1.645  
*   0.0129   =   0.0213
          
       
90%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.788  
-   0.0213   =   0.7667
Interval Upper Limit = p̂ + E =   0.788  
+   0.0213   =   0.8093
          
       
90%   confidence interval is (  
0.767   < p <    0.809  
)
b)
Ho :   p ≥ 0.25
H1 :   p <   0.25
since, confidence interval do not contain null hypothesis 0.25 so, reject the null hypothesis
so, we can conclude that percentage of of all women purchase books online is less than 25%