Question

In: Statistics and Probability

In the following problem: 1. Determine the value of the margin of error ( E )...

In the following problem:
1. Determine the value of the margin of error ( E ) 2. Construct the confidence interval. 3. Write a statement that correctly interprets the confidence interval.
From a Prince Market Research poll in which randomly chosen people were asked if they felt that U.S. nuclear weapons made them feel safer the following data was gathered. Construct a 95% confidence interval for the proportion of all people living in the United States who felt nuclear weapons made them feel safer.
n = 1800 x = 1543 who said “yes”.   

2. A Consumer Reports Research Center randomly surveyed 1000 women to determine what proportion of women purchase books online. Out of 1000 women, 788 reported that they purchase books online.
a. Construct a 90% confidence interval for the true proportion of all women that purchase books online. Write a sentence that correctly interprets the confidence interval.

b. Can we safely conclude that at least 25% of all women purchase books online? Why or why not?

Solutions

Expert Solution

1)

Level of Significance,   α =    0.05          
Number of Items of Interest,   x =   1543          
Sample Size,   n =    1800          
                  
Sample Proportion ,    p̂ = x/n =    0.857          
z -value =   Zα/2 =    1.960   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0082          
margin of error , E = Z*SE =    1.960   *   0.0082   =   0.0162
---------

95%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.857   -   0.0162   =   0.8411
Interval Upper Limit = p̂ + E =   0.857   +   0.0162   =   0.8734
                  
95%   confidence interval is (   0.841   < p <    0.873   )
------

we are 95% confident that true  proportion of all people living in the United States who felt nuclear weapons made them feel safer lies within confidence interval.

====================

2)

a)

Level of Significance,   α =    0.10          
Number of Items of Interest,   x =   788          
Sample Size,   n =    1000          
                  
Sample Proportion ,    p̂ = x/n =    0.788          
z -value =   Zα/2 =    1.645   [excel formula =NORMSINV(α/2)]      
                  
Standard Error ,    SE = √[p̂(1-p̂)/n] =    0.0129          
margin of error , E = Z*SE =    1.645   *   0.0129   =   0.0213
                  
90%   Confidence Interval is              
Interval Lower Limit = p̂ - E =    0.788   -   0.0213   =   0.7667
Interval Upper Limit = p̂ + E =   0.788   +   0.0213   =   0.8093
                  
90%   confidence interval is (   0.767   < p <    0.809   )

b)

Ho :   p ≥ 0.25
H1 :   p <   0.25

since, confidence interval do not contain null hypothesis 0.25 so, reject the null hypothesis

so, we can conclude that percentage of of all women purchase books online is less than 25%


Related Solutions

Find the value of E, the margin of error, for c =0.99, n =16 and s...
Find the value of E, the margin of error, for c =0.99, n =16 and s =2.6. Formull: EBM= Input : EBM = EBM= , Round you answer to 2 decimal places
Determine whether the given conditions justify using the margin of error E = z/2 / when...
Determine whether the given conditions justify using the margin of error E = z/2 / when finding a confidence interval estimate of the population mean . The sample size is n = 8,  = 12.1, and the original population is normally distributed. Group of answer choices Yes No
Determine the point estimate of the population​ proportion, the margin of error for the following confidence​...
Determine the point estimate of the population​ proportion, the margin of error for the following confidence​ interval, and the number of individuals in the sample with the specified​ characteristic, x, for the sample size provided. Lower bound equals=0.689, upper bound equals=0.891, nequals=1200
Determine the point estimate of the population​ proportion, the margin of error for the following confidence​...
Determine the point estimate of the population​ proportion, the margin of error for the following confidence​ interval, and the number of individuals in the sample with the specified​ characteristic, x, for the sample size provided. Lower bound equals =0.189 upper bound equals =0.431 n equlas =1500
Solve the following problems about margin of error basics. a. What is the margin of error...
Solve the following problems about margin of error basics. a. What is the margin of error for estimating a population mean, given the following information and a confidence level of 90%? σ =15 & n = 100 b. What is the margin of error for estimating a population mean given the following information and a confidence level of 90%? σ =5 & n = 500 c. What is the margin of error for estimating a population mean given the following...
Determine the point estimate of the population proportion, the margin of error for the following confidence interval
Determine the point estimate of the population proportion, the margin of error for the following confidence interval, and the number of individuals in the sample with the specified characteristic, x, for the sample size provided. Lower bound=0.226,upper bound=0.604,n=1200 The point estimate of the population is? round to the nearest thousandth as needed. the margin error is? round to the nearest thousandth as needed. the number of individuals in the sample with the specified characteristic is? round to the nearest integer...
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.36 and n=125. a. 90​%             b. 95​%             c. 98​% a. The margin of error for a confidence interval to estimate the population proportion for the 90% confidence level is _ b. The margin of error for a confidence interval to estimate the population proportion for the 95% confidence level is _ c. The margin of...
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.45 and n equals=120. a. 90​% b. 95​% c. 99​%
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to .40 and n=100 A) 90% b) 95% c) 99%
Determine the margin of error for a confidence interval to estimate the population proportion for the...
Determine the margin of error for a confidence interval to estimate the population proportion for the following confidence levels with a sample proportion equal to 0.35 and n=120 a)90​% b)95​% c)98​% Click the icon to view a portion of the Cumulative Probabilities for the Standard Normal Distribution table. a. The margin of error for a confidence interval to estimate the population proportion for the 90 % confidence level is _____​(Round to three decimal places as​ needed.) b. The margin of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT