Question

In: Physics

A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into...

A rocket moves with a speed of 45 m / s. The rocket suddenly breaks into two parts of equal mass that fly at speeds v1 and v2. Obtain the magnitude of the velocity of each part in which the rocket broke.

Solutions

Expert Solution

The angle of velocity with respect to initial direction is necessary to find the magnitude of velocity. Suppose, if it has broken into two parts with angles 30o and 60o with respect to initial direction, then we can find the final velocities as follows:


Related Solutions

A fireworks rocket is moving at a speed of v = 45.7 m/s. The rocket suddenly...
A fireworks rocket is moving at a speed of v = 45.7 m/s. The rocket suddenly breaks into two pieces of equal mass, which fly off with velocities v1 at an angle of theta1 = 30.7° and v2 at an angle of theta2 = 59.3° as shown in the drawing below.
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and...
Mass m = 0.1 kg moves to the right with speed v = 0.54 m/s and collides with an equal mass initially at rest. After this inelastic collision the system retains a fraction = 0.9 of its original kinetic energy. If the masses remain in contact for 0.01 secs while colliding, what is the average force in N between the masses during the collision? Hints: All motion is in 1D. Ignore friction between the masses and the horizontal surface. You...
A projectile is launched with a speed of 45 m/s at an angle of 35 degrees...
A projectile is launched with a speed of 45 m/s at an angle of 35 degrees above the horizontal from the top of a wall. The projectile lands 250m from the base of the wall. a.) Determine the height of the wall. b.) Determine the impact velocity of the projectile
A model rocket is launched straight upward with an initial speed of 42.0 m/s. It accelerates...
A model rocket is launched straight upward with an initial speed of 42.0 m/s. It accelerates with a constant upward acceleration of 2.50 m/s2 until its engines stop at an altitude of 160 m. (a) What can you say about the motion of the rocket after its engines stop?. (b) What is the maximum height reached by the rocket? (c) How long after liftoff does the rocket reach its maximum height? (d) How long is the rocket in the air?
a model rocket is launched straight upward with an innitial speed of 11.0 m/s. it accelerates...
a model rocket is launched straight upward with an innitial speed of 11.0 m/s. it accelerates with a constant upward acceleration of 22 m/s^2 until its engines stop 3.0 seconds later. it then continues on as a free fall particle until it hits the ground. (a) draw and label a diagram of the above and below information (b) find the velocity (in m/s ) of the rocket at the instant it runs out if fuel. (c)find the max height (in...
A 2.0 kg glider moves in the +x direction at constant speed 2.0 m/s on a...
A 2.0 kg glider moves in the +x direction at constant speed 2.0 m/s on a frictionless horizontal air-track. The second glider of mass 1.0 kg moves in the –x-direction at a constant speed of 2.0 m/s on the same air track towards the first glider. What is the speed of the center of mass of the two gliders right after the collision?
A magnesium ion (Mg+) moves in the xy-plane with a speed of 2.80 ✕ 103 m/s....
A magnesium ion (Mg+) moves in the xy-plane with a speed of 2.80 ✕ 103 m/s. If a constant magnetic field is directed along the z-axis with a magnitude of 2.75 ✕ 10−5 T, find the magnitude of the magnetic force acting on the ion and the magnitude of the ion's acceleration. (a) the magnitude (in N) of the magnetic force acting on the ion _______ N (b) the magnitude (in m/s2) of the ion's acceleration _______ m/s2
A 115 N block moves on a flat surface at an initial speed of 5 m/s....
A 115 N block moves on a flat surface at an initial speed of 5 m/s. The coefficient of kinetic friction between the block and the surface is 0.28. The block is 2.2 meters away from the beginning of a spring with a coefficient of 150 N/m. The spring is initially in its stable state and has a length of 140 centimeters. Show the Work and Energy substituted equation for this case. You are not required to solve it, but...
In (Figure 1), the rod moves with a speed of 1.6 m/s on rails 29.0 cm...
In (Figure 1), the rod moves with a speed of 1.6 m/s on rails 29.0 cm apart. The rod has a resistance of 2.1 Ω . The magnetic field is 0.31 T , and the resistance of the U-shaped conductor is 26.0 Ω at a given instant. Part A Calculate the induced emf Part B Calculate the current in the U -shaped conductor. Part C Calculate the external force needed to keep the rod's velocity constant at that instant.
A submarine moves away from an undersea vertical cliff at a speed vs = 10.0 m/s....
A submarine moves away from an undersea vertical cliff at a speed vs = 10.0 m/s. It emits a sound wave at a frequency fe = 20,000. Hz, which travels to the cliff and reflects off it at a frequency fr. The reflected wave travels back to the submarine and generates beats with the emitted wave ( fe ) that are detected by the sub’s sensors. For a speed of sound in seawater v = 1,174 m/s, the frequency of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT