Question

In: Math

Solve the following problems: (a) y'' - 2y' + 5y = 0 with y(0) = 1...

Solve the following problems:
(a) y'' - 2y' + 5y = 0 with y(0) = 1 and y'(0) = 2.
(b) y(3) - 3y' + 2y = 0 with y(0) = 5, y'(0) = 6, and y''(0) = 11.

Solutions

Expert Solution



Related Solutions

Solve y'' - 2y' + 5y = excot(2x)
Solve y'' - 2y' + 5y = excot(2x)
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve the differential equation. y'''-4y''+5y'-2y=0 Initial Conditions: y(0)=4 y'(0)=7 y''(0)=11
Solve using Laplace Transform: 1) y'' - 2y' + 5y = cos(2t) - cos(2t)u4pi(t); y(0) =...
Solve using Laplace Transform: 1) y'' - 2y' + 5y = cos(2t) - cos(2t)u4pi(t); y(0) = 0, y'(0) = 0
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0)...
Use the Laplace transform to solve y'' + 4y' + 5y = 1, y(0)= 1, y'(0) = 2
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
Use the Laplace transform to solve the problem with initial values y''-2y'+2y=cost y(0)=1 y'(0)=0
non-homogeneous ODE. solve this equation analytically. -2y''+5y'+3y=exp(-0.2x) b.c y'(0)=1, y'(10)=-y(10)
non-homogeneous ODE. solve this equation analytically. -2y''+5y'+3y=exp(-0.2x) b.c y'(0)=1, y'(10)=-y(10)
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
solve using the laplace transform y''-2y'+y=e^-1 , y(0)=0 , y'(0)=1
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  ...
Solve the following initial value problem. y(4) − 5y′′′ + 4y′′  =  x,    y(0)  =  0, y′(0)  =  0, y′′(0)  =  0, y′′′(0)  =  0.
1. Solve the initial value problems a.) y"-10y'+25y=e^5x, y(0)= 1 and y'(0)= 6 b.) y"+y'-2y=2sin(x), y(0)=...
1. Solve the initial value problems a.) y"-10y'+25y=e^5x, y(0)= 1 and y'(0)= 6 b.) y"+y'-2y=2sin(x), y(0)= 1 and y'(0)= 2 c.) y"+14y'+49y=0, y(0)= -1 and y'(0)= 9 2. Find a two-parameter family of solutions to the following differential equations a.) y"-3y'-10y=14e^-2x b.) y"-6y'+25y=0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT