Question

In: Math

x^2y''+2xy'+x^2y=0 Determine y if     y1=(sin(x))/x

x^2y''+2xy'+x^2y=0

Determine y if    

y1=(sin(x))/x

Solutions

Expert Solution

feel free to ask any doubt please. If you don't have any doubt please like.


Related Solutions

y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1
y''' + 2y'' − y' − 2y = sin(4t),  y(0) = 0,  y'(0) = 0,  y''(0) = 1
Find the solution of the equation given around x_0 = 0. (1+x^2)y"+2xy'-2y=0
Find the solution of the equation given around x_0 = 0. (1+x^2)y"+2xy'-2y=0
Solve by power series around x=0: y"-2xy'-2y=0 (Find the first three nonzero terms of each of...
Solve by power series around x=0: y"-2xy'-2y=0 (Find the first three nonzero terms of each of the LI solutions)
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
y''(t)+(x+y)^2*y(t)=sin(x*t+y*t)-sin(x*t-y*t), y(0)=0, y'(0)=0, x and y are real numbers
Consider the following differential equation: x2y"-2xy'+(x2+2)y=0 Given that y1=x cos x is a solution, find a...
Consider the following differential equation: x2y"-2xy'+(x2+2)y=0 Given that y1=x cos x is a solution, find a second linearly independent solution to the differential equation. Write the general solution.
Case 2 Method: y" + 3y' + 2y = 7cos(x) - sin(x)
Case 2 Method: y" + 3y' + 2y = 7cos(x) - sin(x)
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
Use power series to solve the initial value problem x^2y''+xy'+x^2y=0, y(0)=1, y'(0)=0
y''−2xy' + λy = 0, −∞ < x < ∞ where λ is a constant, is...
y''−2xy' + λy = 0, −∞ < x < ∞ where λ is a constant, is known as the Hermite equation, named after the famous mathematician Charles Hermite. This equation is an important equation in mathematical physics. • Find the first four terms in each of two solutions about x = 0 and show that they form a fundamental set of solutions • Observe that if λ is a nonnegative even integer, then one or the other of the series...
a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0
  a) Solve IVP: y" + y' -2y = x + sin2x; y(0) = 1, y'(0) = 0 b) Solve using variation of parameters: y" -9y = x/e^3x
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
Solve the initial value problem: y''+2y'+y = x^2 , y(0)=0 , y'(0) = 0
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT