Question

In: Economics

Brianna’s preferences can be represented by the utility function u(x,y) = min{x,y}. Initially she faces prices...

Brianna’s preferences can be represented by the utility function u(x,y) = min{x,y}. Initially she faces prices ($2,$1) and her income is $12. If prices change to ($3,$1) then the compensating variation

Select one:
a. There is not enough information to determine which variation is greater.
b. is $2 more than the equivalent variation.
c. is $1 less than the equivalent variation.
d. equals the equivalent variation.
e. is $1 more than the equivalent variation.

Solutions

Expert Solution

Answer: The solution to the above problem can be derived as follows:

The given utility function U(x,y) = min{x,y}, implies perfect competency, which in turn implies that x = y.

Compensating Variation: The amount of money to give to the consumer to completely offset the price change

Now given the budget equation and the initial prices of the products, the budget equation is:

2x + 1y = 12

Since, x = y, we replace y with x in the budget equation and hence I get

2x + 1x = 12

or, x = 4 = y (as x=y)

So the utility function becomes U = min(4,4)

or, U = 4

Now after the price change the total expence becomes M = 4*3 + 4*1 (putting values of x and y and their new prices)

M = 16

So the compensating variation is 16 - 12 = 4

Equivalent Variation: The amount of money taken away from consumer that reduces his/her utility by increasing the price

After the price change the budget is

12 = 3x + 1y

or, 12 = 4x (replacing y with x)

or, x = 3 = y

So the utility becomes U = min(3,3) = 3

To have this utilty before the price chnage, the budget would be before price change

M = 3*2 + 1*2 = 8

So the Equivalent variation is 12 - 8 = 4

Hence we see that the Compensating variation is equal to Equivalent variation. Hence the correct answer is option d


Related Solutions

Ella’s preferences can be represented by the utility function u(x,y) = min{5x, y}. If the price...
Ella’s preferences can be represented by the utility function u(x,y) = min{5x, y}. If the price of x is $10 and the price of y is $15, how much money would she need to be able to purchase a bundle that she likes as well as the bundle (10, 25). Select one: a. $475. b. $85. c. $425. d. $209. e. $440.
A consumer has his preferences represented by the utility function U(x,y) = min {5x + 4y,...
A consumer has his preferences represented by the utility function U(x,y) = min {5x + 4y, 4x + 7y} if x is on the horizontal axis and y is on the vertical axis, what is the slope of his indifference curve at the point (10,10) a. -4/7 b. -5/4 c. -4/5 d. -7/4 e. -5/7
Dr Pepper’s preferences can be represented by the utility function u(x,y) = x + y where...
Dr Pepper’s preferences can be represented by the utility function u(x,y) = x + y where x is his consumption of Coca Cola (hereafter, referred to as Coke) and y is his consumption of orange juice (hereafter, referred to as OJ).   Initially, both types of drinks are not taxed and with an income of $12 he faces prices ($1, $2). On the advice of nutritionists, the government decides to impose a specific tax of $2 on Coke which leads to...
Suppose a consumer has preferences represented by the utility function U(X,Y) = MIN[X,2Y]. Suppose PX =...
Suppose a consumer has preferences represented by the utility function U(X,Y) = MIN[X,2Y]. Suppose PX = 1 and PY = 2. Draw the Income Consumption Curve for this consumer for income values M = 100, M = 200, and M = 300. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also, for each bundle that the consumer chooses, draw the indifference curve that...
A consumer's preferences for food (x) and clothes (y) are represented by the utility function u(x,y)=...
A consumer's preferences for food (x) and clothes (y) are represented by the utility function u(x,y)= x + 2 ln(y). The prices of food and clothes are px and py euros/unit, respectively, and the consumer's income is I euros. A. (10 points) Describe the consumer's problem, including her budget constraints, and calculate her ordinary demand functions, x(px,py,I) and y(px,py,I). B. (10 points) For prices and income (px,py,I)=(1,1,3), calculate the substitution and income effects over the demand of y of a...
Judy's preferences over x and y can be represented by the utility function: U=xy3 The price...
Judy's preferences over x and y can be represented by the utility function: U=xy3 The price of x is Px = 8, the price of y is Py = 4, and her income is I = 480. At Judy's optimal consumption bundle, What is her demand for x? What is her demand for y?
"Suppose a consumer has preferences represented by the utility function U(X,Y) = X(^2)Y Suppose Py =...
"Suppose a consumer has preferences represented by the utility function U(X,Y) = X(^2)Y Suppose Py = 1, and the consumer has $360 to spend. Draw the Price-Consumption Curve for this consumer for income values Px =1, Px = 2, and Px = 5. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also for each bundle that the consumer chooses, draw the indifference curve...
Suppose a consumer has preferences represented by the utility function U(X,Y) = X2Y Suppose PY =...
Suppose a consumer has preferences represented by the utility function U(X,Y) = X2Y Suppose PY = 1, and the consumer has $300 to spend. Draw the Price-Consumption Curve for this consumer for income values PX = 1, PX = 2, and PX = 5. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also, for each bundle that the consumer chooses, draw the indifference...
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x, y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px=1 and Py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in 1a? If so, explain in detail. (c) Derive the utility maximizing bundle.
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the...
Consider a consumer with preferences represented by the utility function: u(x; y) = x1/4y1/2 Suppose the consumer has income M = 10 and the prices are px = 1 and py = 2. (a) Are goods x and y both desirable? (b) Are there implications for the utility maximization problem for the consumer from your finding in a? If so, explain in detail.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT