Question

In: Statistics and Probability

A previous random sample of 4000 U.S. citizens yielded 2250 who are in favor of gun...

A previous random sample of 4000 U.S. citizens yielded 2250 who are in favor of gun control legislation. How many citizens would need to be sampled for a 90% confidence interval to estimate the true proportion within 2%? Right-click the link to use this Z-table.

Solutions

Expert Solution

(OR)............THIS IS ALSO CORRECT...

Solution :

Given that,

n = 4000

x = 2250

= 2250 / 4000 = 0.5625

1 - = 1 - 0.5625 = 0.4375

margin of error = E = 2% = 0.02

At 90% confidence level the z is ,

= 1 - 90% = 1 - 0.90 = 0.10

/ 2 = 0.1 / 2 = 0.05

Z/2 = Z0.05 = 1.645

sample size = n = (Z / 2 / E )2 * * (1 - )

= (1.645 / 0.02)2 * 0.5625 * 0.4375

= 1664.83

= 1665

1665 citizens would need to be sampled .

NOTE:: I HOPE THIS ANSWER IS HELPFULL TO YOU......**PLEASE SUPPORT ME WITH YOUR RATING......

**PLEASE GIVE ME "LIKE".....ITS VERY IMPORTANT  FOR,ME......PLEASE SUPPORT ME .......THANK YOU


Related Solutions

A college looked at a random sample of students who worked the previous summer.   Use the...
A college looked at a random sample of students who worked the previous summer.   Use the following information to answer questions 1 - 7. The following data show the average earnings and sample standard deviations for a random sample of males and a random sample of females. Group n x̄ s males 15 3400 2495 females 20 2500 1920 The following degrees of freedom may be helpful: 25.49 1) Find the point estimate of the difference between the mean summer...
. Thenutritionlabelonabagofpotatochipssaysthataoneounceservingofpotatochipshas130calories. A random sample of 35 bags yielded a sample mean of 134 calories with...
. Thenutritionlabelonabagofpotatochipssaysthataoneounceservingofpotatochipshas130calories. A random sample of 35 bags yielded a sample mean of 134 calories with a standard deviation of 17 calories. Is there significant evidence that the nutrition label does not provide an accurate measure of calories in the bags of potato chips? Answer this question using the hypothesis testing framework. Explicitly give the p-value for your test.
a random sample of 100 observations from a population. with standard deviation 60 yielded a sample...
a random sample of 100 observations from a population. with standard deviation 60 yielded a sample mean of 110. A. test the null hypothesis that m = 100 and the alternative hypothesis m > 100 using alpha = .05 and interpret the results b. test the null against the alternative hypothesis that m isn't equal to 110. using alpha = .05 and interpret the results c. compare the p values of the two tests you conducted. Explain why the results...
a random sample of 100 observations from a population. with standard deviation 60 yielded a sample...
a random sample of 100 observations from a population. with standard deviation 60 yielded a sample mean of 110. A. test the null hypothesis that m = 100 and the alternative hypothesis m > 100 using alpha = .05 and interpret the results b. test the null against the alternative hypothesis that m isn't equal to 110. using alpha = .05 and interpret the results c. compare the p values of the two tests you conducted. Explain why the results...
A random sample of 100 observations from a population with standard deviation 17.83 yielded a sample...
A random sample of 100 observations from a population with standard deviation 17.83 yielded a sample mean of 93. 1. Given that the null hypothesis is ?=90 and the alternative hypothesis is ?>90 using ?=.05, find the following: (a) Test statistic = (b) P - value: (c) The conclusion for this test is: A. There is insufficient evidence to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is...
A random sample of 100 observations from a population with standard deviation 23.99 yielded a sample...
A random sample of 100 observations from a population with standard deviation 23.99 yielded a sample mean of 94.1 1. Given that the null hypothesis is μ=90μ=90 and the alternative hypothesis is μ>90μ>90 using α=.05α=.05, find the following: (a) Test statistic == (b) P - value: (c) The conclusion for this test is: A. There is insufficient evidence to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is...
A random sample of 100 observations from a population with standard deviation 14.29 yielded a sample...
A random sample of 100 observations from a population with standard deviation 14.29 yielded a sample mean of 92.7. 1. Given that the null hypothesis is μ=90 and the alternative hypothesis is μ>90 using α=.05, find the following: (a) Test statistic = (b) P - value: (c) The conclusion for this test is: A. There is insufficient evidence to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is...
A random sample of 100 observations from a population with standard deviation 70 yielded a sample...
A random sample of 100 observations from a population with standard deviation 70 yielded a sample mean of 113. Complete parts a through c below. a. Test the null hypothesis that muequals100 against the alternative hypothesis that mugreater than​100, using alphaequals0.05. Interpret the results of the test. What is the value of the test​ statistic? b. test the null hypothesis that mu = 100 against the alternative hypothesis that mu does not equal 100, using alpha=.05. interpret the results of...
A random sample of 100 observations from a population with standard deviation 22.99 yielded a sample...
A random sample of 100 observations from a population with standard deviation 22.99 yielded a sample mean of 94.1. 1. Given that the null hypothesis is μ≤90 and the alternative hypothesis is μ>90 using α=.05, find the following: (a) Test statistic = (b) P - value: (c) The decision for this test is: A. Fail to reject the null hypothesis B. Reject the null hypothesis C. None of the above 2. Given that the null hypothesis is μ=90 and the...
In a random sample of 360 women, 65% favored stricter gun control laws. In a random...
In a random sample of 360 women, 65% favored stricter gun control laws. In a random sample of 220 men, 60% favored stricter gun control laws. Test the claim that the proportion of women favoring stricter gun control is higher than the proportion of men favoring stricter gun control. Use a significance level of 0.05.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT