Question

In: Advanced Math

Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular,...

Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular, then G has a perfect matching.

HINT:  Use the Marriage Theorem and the Pigeonhole Principle. Recall that G is r-regular means every vertex of G has degree

Solutions

Expert Solution

To prove this result we will required two results:

Result 1:

Hall's Theorem:

Let G be a bipartite graph with bipartition . Then G contains a matching that saturates every vertex in if and only if .

Result 2:

If is a K-regular bipartite graph with K > 0 then where and are bipartition of .

Suppose is a K-regular bipartite graph with bipartition and

......................By Result 2

Let then

Suppose and are the sets of edges incident with vertices in and respectively.

Clearly by definition of ,

and Hence by Hall's theorem has a matching M saturating every vertex in .

M is perfect matching

has a perfect Matching.


Related Solutions

9. Let G be a bipartite graph and r ∈ Z>0. Prove that if G is...
9. Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular, then G has a perfect matching.1 10. Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V (G)
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G...
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G has no cut-edge. (Hint: Use the bipartite version of handshaking.) b) Construct a simple, connected, nonbipartite 3-regular graph with a cut-edge. (This shows that the condition “bipartite” really is necessary in (a).) 2) Let F_n be a fan graph and Let a_n = τ(F_n) where τ(F_n) is the number of spanning trees in F_n. Use deletion/contraction to prove that a_n = 3a_n-1 - a_n-2...
1. Let G be a k-regular bipartite graph. Use Corollary 3.1.13 to prove that G can...
1. Let G be a k-regular bipartite graph. Use Corollary 3.1.13 to prove that G can be decomposed into r-factors iff r divides k.
Prove that every bipartite graph G with size m satisfies α prime(G) ≥ m/∆(G).
Prove that every bipartite graph G with size m satisfies α prime(G) ≥ m/∆(G).
Let S ⊆ R and let G be an arbitrary isometry of R . Prove that...
Let S ⊆ R and let G be an arbitrary isometry of R . Prove that the symmetry group of G(S) is isomorphic to the symmetry group of S. Hint: If F is a symmetry of S, what is the corresponding symmetry of G(S)?
Let G be a graph. prove G has a Eulerian trail if and only if G...
Let G be a graph. prove G has a Eulerian trail if and only if G has at most one non-trivial component and at most 2 vertices have odd degree
Let G be a simple graph. Prove that the connection relation in G is an equivalence...
Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V (G)
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove...
Let G be a group. For each x ∈ G and a,b ∈ Z+ a) prove that xa+b = xaxb b) prove that (xa)-1 = x-a c) establish part a) for arbitrary integers a and b in Z (positive, negative or zero)
Let G be a bipartite graph with 107 left vertices and 20 right vertices. Two vertices...
Let G be a bipartite graph with 107 left vertices and 20 right vertices. Two vertices u, v are called twins if the set of neighbors of u equals the set of neighbors of v (triplets, quadruplets etc are defined similarly). Show that G has twins. Bonus: Show that G has triplets. What about quadruplets, etc.?
Let A be incidence matrix of graph G. prove if G has a cycle, then null...
Let A be incidence matrix of graph G. prove if G has a cycle, then null space of transpose of A is not {0} (there exists non-trivial solution of (A^T)y=0)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT