Question

In: Advanced Math

Prove that every bipartite graph G with size m satisfies α prime(G) ≥ m/∆(G).

Prove that every bipartite graph G with size m satisfies α prime(G) ≥ m/∆(G).

Solutions

Expert Solution

ANSWER :-

A bipartite graph, also called a bigraph, is a set of graph vertices decomposed into two disjoint sets such that no two graph vertices within the same set are adjacent. A bipartite graph is a special case of a k-partite graph.

From konjg's egevary theorem,

The size of the bipartite graph has a matching size at least   

here we are having bipartite graph G with size m

let us consider prime(G) is a prime function of the bipartite graph.

But from konjg's egevary theoram ||G|| = m.

then.,

A bipartite graph is a special case of a k-partite graph.

prime(G) is always greater than the size of the graph.

that every bipartite graph G with size m satisfies α prime(G) ≥ m/∆(G).

since α prime(G) ≥ m/∆(G).

Hence proved.


Related Solutions

Prove or disprove: (a) If G is a graph of order n and size m with...
Prove or disprove: (a) If G is a graph of order n and size m with three cycles, then m ≥ n + 2. (b) There exist exactly two regular trees.
9. Let G be a bipartite graph and r ∈ Z>0. Prove that if G is...
9. Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular, then G has a perfect matching.1 10. Let G be a simple graph. Prove that the connection relation in G is an equivalence relation on V (G)
Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular,...
Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular, then G has a perfect matching. HINT:  Use the Marriage Theorem and the Pigeonhole Principle. Recall that G is r-regular means every vertex of G has degree
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G...
1) a) Let k ≥  2 and let G be a k-regular bipartite graph. Prove that G has no cut-edge. (Hint: Use the bipartite version of handshaking.) b) Construct a simple, connected, nonbipartite 3-regular graph with a cut-edge. (This shows that the condition “bipartite” really is necessary in (a).) 2) Let F_n be a fan graph and Let a_n = τ(F_n) where τ(F_n) is the number of spanning trees in F_n. Use deletion/contraction to prove that a_n = 3a_n-1 - a_n-2...
1. Let G be a k-regular bipartite graph. Use Corollary 3.1.13 to prove that G can...
1. Let G be a k-regular bipartite graph. Use Corollary 3.1.13 to prove that G can be decomposed into r-factors iff r divides k.
Prove or disprove: If G = (V; E) is an undirected graph where every vertex has...
Prove or disprove: If G = (V; E) is an undirected graph where every vertex has degree at least 4 and u is in V , then there are at least 64 distinct paths in G that start at u.
(a) Prove the following claim: in every simple graph G on at least two vertices, we...
(a) Prove the following claim: in every simple graph G on at least two vertices, we can always find two distinct vertices v,w such that deg(v) = deg(w). (b) Prove the following claim: if G is a simple connected graph in which the degree of every vertex is even, then we can delete any edge from G and it will still be connected.
Problem 8. A bipartite graph G = (V,E) is a graph whose vertices can be partitioned...
Problem 8. A bipartite graph G = (V,E) is a graph whose vertices can be partitioned into two (disjoint) sets V1 and V2, such that every edge joins a vertex in V1 with a vertex in V2. This means no edges are within V1 or V2 (or symbolically: ∀u, v ∈ V1, {u,v} ∉ E and ∀u,v ∈ V2, {u,v} ∉ E). 8(a) Show that the complete graph K2 is a bipartite graph. 8(b) Prove that no complete graph Kn,...
Prove that every outerplanar graph is 3-colorable.
Prove that every outerplanar graph is 3-colorable.
please prove this problem step by step. thanks Prove that in every simple graph there is...
please prove this problem step by step. thanks Prove that in every simple graph there is a path from every vertex of odd degree to some other vertex of odd degree.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT