In: Economics
Calculate the present worth of all costs for a newly acquired machine with an initial cost of $28,000, no trade-in value, a life of 14 years, and an annual operating cost of $17,000 for the first 5 years, increasing by 10% per year thereafter. Use an interest rate of 10% per year.
The present worth of all costs for a newly acquired machine is determined to be
Present worth of an investment = A0/(1+i)^0+A1/(1+i)^1+A2/(1+i)^2....An/(1+i)^n
Time | Cash Flow | Discounting Factor | PV of cash flow |
0 | 28000 | 1 | 28000 |
1 | 17000 | 0.909090909 | 15454.54545 |
2 | 17000 | 0.826446281 | 14049.58678 |
3 | 17000 | 0.751314801 | 12772.35162 |
4 | 17000 | 0.683013455 | 11611.22874 |
5 | 17000 | 0.620921323 | 10555.66249 |
6 | 18700 | 0.56447393 | 10555.66249 |
7 | 20570 | 0.513158118 | 10555.66249 |
8 | 22627 | 0.46650738 | 10555.66249 |
9 | 24889.7 | 0.424097618 | 10555.66249 |
10 | 27378.67 | 0.385543289 | 10555.66249 |
11 | 30116.54 | 0.350493899 | 10555.66249 |
12 | 33128.19 | 0.318630818 | 10555.66249 |
13 | 36441.01 | 0.28966438 | 10555.66249 |
14 | 40085.11 | 0.263331254 | 10555.66249 |
187444.3375 |
Present worth = $187444.33
Showing formulas in excel:
Time | Cash Flow | Discounting Factor | PV of cash flow |
0 | 28000 | =1/(1.1)^A2 | =B2*C2 |
1 | 17000 | =1/(1.1)^A3 | =B3*C3 |
2 | 17000 | =1/(1.1)^A4 | =B4*C4 |
3 | 17000 | =1/(1.1)^A5 | =B5*C5 |
4 | 17000 | =1/(1.1)^A6 | =B6*C6 |
5 | 17000 | =1/(1.1)^A7 | =B7*C7 |
6 | =B7*1.1 | =1/(1.1)^A8 | =B8*C8 |
7 | =B8*1.1 | =1/(1.1)^A9 | =B9*C9 |
8 | =B9*1.1 | =1/(1.1)^A10 | =B10*C10 |
9 | =B10*1.1 | =1/(1.1)^A11 | =B11*C11 |
10 | =B11*1.1 | =1/(1.1)^A12 | =B12*C12 |
11 | =B12*1.1 | =1/(1.1)^A13 | =B13*C13 |
12 | =B13*1.1 | =1/(1.1)^A14 | =B14*C14 |
13 | =B14*1.1 | =1/(1.1)^A15 | =B15*C15 |
14 | =B15*1.1 | =1/(1.1)^A16 | =B16*C16 |
=SUM(D2:D16) |