Question

In: Physics

A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...

A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.680 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.242 s.

1.What is the direction of the induced current flow as the loop begins to rotate?

2.What is the average induced emf in the loop during this rotation?

Solutions

Expert Solution


Related Solutions

A circular wire loop of radius 1.4 cm is placed in a magnetic field of magnitude...
A circular wire loop of radius 1.4 cm is placed in a magnetic field of magnitude 2.3 T. If the magnetic field goes to zero in a time of 5 s, what is the magnitude of the current induced in the loop? The wire has a diameter of 2 mm, and the resistivity of copper is 1.7 x 10-8 Ohm-m.
A circular conducting loop is held fixed in a uniform magnetic field that varies in time...
A circular conducting loop is held fixed in a uniform magnetic field that varies in time according to B(t) = B exp(-at) where t is in s, a is in s^-1 and B is the field strength in T at t = 0. At t = 0, the emf induced in the loop is 0.0614 V. At t = 2.74 s, the emf is 0.0197V. Find a.
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic...
A circular conducting loop of radius 25.0 cm is located in a region of homogeneous magnetic field of magnitude 0.300 T pointing perpendicular to the plane of the loop. The loop is connected in series with a resistor of 283 Ω. The magnetic field is now increased at a constant rate by a factor of 2.80 in 19.0s. Calculate the magnitude of the induced emf in the loop while the magnetic field is increasing. Tries 0/20 Calculate the magnitude of...
A circular loop which possesses 55 turns is placed in a uniform magnetic field. The direction...
A circular loop which possesses 55 turns is placed in a uniform magnetic field. The direction of the magnetic field makes an angle of 70 o with respect to the normal direction to the loop. The magnetic field strength B is increased at a constant rate from B1 =3T to B2 =17T in a time interval of 20 s. If Ф1 is 3.99 Wb, a) What is the radius of the wire? (PLEASE THOROUGHLY EXPLAIN) b) What is the EMF?...
A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field...
A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.167 s , the magnetic field strength increases from 54.5 mT to 94.1 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts.
A uniform magnetic field B is directed into the page. A circular circuit of radius r...
A uniform magnetic field B is directed into the page. A circular circuit of radius r containing a resistor R and a capacitor C, is placed in this field. Initially the capacitor is uncharged, and at time t = 0, the magnitude of the magnetic field starts to change at a rate dB/dt = x, x > 0. a) Using Lenz’s law, determine the direction of the induced current in the closed loop. Justify your answer. b) Calculate the induced...
The figure below displays a circular loop of nickel wire in a uniform magnetic field pointing...
The figure below displays a circular loop of nickel wire in a uniform magnetic field pointing into the page. The radius of the loop is 10.0 cm and the magnitude of the field is 0.160 T. You grab points A and B and pull them in opposite directions, stretching the loop until its area is nearly zero, taking a time of 0.210 s to do so. What is the magnitude of the average induced emf in the loop (in mV)...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field....
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field. At t = 0 s, the normal to the coil is perpendicular to the magnetic field. At t = 0.021 s, the normal makes an angle of 45o with the field because the coil has made one-eighth of a revolution. An average emf of magnitude 0.075 V is induced in the coil. Find the magnitude of the magnetic field at the location of the...
A flat circular loop having six turns and radius 9.0 cm is placed on a horizontal...
A flat circular loop having six turns and radius 9.0 cm is placed on a horizontal surface. The resistance of the wire is 25 Ohms. A 9V battery is attached to the wire, allowing for the flow of electrons. a) What is the magnitude and direction of the magnetic field? Assume the horizontal surface is defined by the xy – plane b) If the wire shorts out (causing the current to stop flowing) in 50ms, what is the induced emf?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT