Question

In: Physics

A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field...

A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.167 s , the magnetic field strength increases from 54.5 mT to 94.1 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts.

Solutions

Expert Solution


Related Solutions

A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil.
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil att = 5.40 s.
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field....
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field. At t = 0 s, the normal to the coil is perpendicular to the magnetic field. At t = 0.021 s, the normal makes an angle of 45o with the field because the coil has made one-eighth of a revolution. An average emf of magnitude 0.075 V is induced in the coil. Find the magnitude of the magnetic field at the location of the...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.680 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.242 s. 1.What is the direction of the induced current flow as the loop begins to rotate? 2.What is the average induced emf in the loop during this rotation?
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field that drops from 0.12 T to 0 TT in 10 ms . The axis of the coil is parallel to the field. part A) What is the emf of the coil? Express your answer in volts.
A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic...
A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic field. If the orientation of the coil is varied through all possible positions, the maximum torque on the coil by magnetic forces is 0.16 Nm when the current in the coil is 4.0 mA. What is the magnitude of the magnetic field? 0.50 T 1.6 T 0.21 T 1.2 T 0.37 T
To measure a magnetic field produced by an electromagnet, you use a circular coil of radius...
To measure a magnetic field produced by an electromagnet, you use a circular coil of radius 0.30 m with 25 loops (resistance of 0.30 O) that rests between the poles of the magnet and is connected to an ammeter. While the current in the electromagnet is reduced to zero in 1.5 sec, the ammeter in the coil shows a steady reading of 180 mA. Draw a picture of the experimental setup and determine everything you can about the electromagnet.
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
A uniform magnetic field B is directed into the page. A circular circuit of radius r...
A uniform magnetic field B is directed into the page. A circular circuit of radius r containing a resistor R and a capacitor C, is placed in this field. Initially the capacitor is uncharged, and at time t = 0, the magnitude of the magnetic field starts to change at a rate dB/dt = x, x > 0. a) Using Lenz’s law, determine the direction of the induced current in the closed loop. Justify your answer. b) Calculate the induced...
A circular wire loop of radius 1.4 cm is placed in a magnetic field of magnitude...
A circular wire loop of radius 1.4 cm is placed in a magnetic field of magnitude 2.3 T. If the magnetic field goes to zero in a time of 5 s, what is the magnitude of the current induced in the loop? The wire has a diameter of 2 mm, and the resistivity of copper is 1.7 x 10-8 Ohm-m.
   A flat coil of wire is placed in a uniform magnetic field that is in the...
   A flat coil of wire is placed in a uniform magnetic field that is in the y direction. (i) The magnetic flux through the coil is maximum if the coil is (a) in the xy plane(b) in either the xy or the yz plane (c) in the xz plane (d) in any orientation, because it is constant. (ii) For what orientation is the flux zero? Choose from the same possibilities.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT