Question

In: Physics

A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field...

A 123 turn circular coil of radius 2.27 cm is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. Over an interval of 0.167 s , the magnetic field strength increases from 54.5 mT to 94.1 mT . Find the magnitude of the average emf avg induced in the coil during this time interval, in millivolts.

Solutions

Expert Solution


Related Solutions

A 105‑turn circular coil of radius 2.41 cm and negligible resistance is immersed in a uniform...
A 105‑turn circular coil of radius 2.41 cm and negligible resistance is immersed in a uniform magnetic field that is perpendicular to the plane of the coil. The coil is connected to a 14.7 Ω resistor to create a closed circuit. During a time interval of 0.167 s, the magnetic field strength decreases uniformly from 0.481 T to zero. Find the energy, in millijoules, that is dissipated in the resistor during this time interval.
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil.
A 20-turn circular coil of radius 4.20 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil att = 5.40 s.
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field....
A circular coil (830 turns, radius = 0.087 m) is rotating in a uniform magnetic field. At t = 0 s, the normal to the coil is perpendicular to the magnetic field. At t = 0.021 s, the normal makes an angle of 45o with the field because the coil has made one-eighth of a revolution. An average emf of magnitude 0.075 V is induced in the coil. Find the magnitude of the magnetic field at the location of the...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of...
A circular conducting loop with radius 2.70 cm is placed in a uniform magnetic field of 0.680 T with the plane of the loop perpendicular to the magnetic field, as shown. The loop is rotated 180° about the axis in 0.242 s. 1.What is the direction of the induced current flow as the loop begins to rotate? 2.What is the average induced emf in the loop during this rotation?
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.25 V and a current of 2.5 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of...
A magnetic field is perpendicular to the plane of a single-turn circular coil. The magnitude of the field is changing, so that an emf of 0.81 V and a current of 3.8 A are induced in the coil. The wire is then re-formed into a single-turn square coil, which is used in the same magnetic field (again perpendicular to the plane of the coil and with a magnitude changing at the same rate). What (a) emf and (b) current are...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field...
An 1200-turn coil of wire that is 2.4 cm in diameter is in a magnetic field that drops from 0.12 T to 0 TT in 10 ms . The axis of the coil is parallel to the field. part A) What is the emf of the coil? Express your answer in volts.
A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic...
A circular coil (radius = 0.40 m) has 160 turns and is in a uniform magnetic field. If the orientation of the coil is varied through all possible positions, the maximum torque on the coil by magnetic forces is 0.16 Nm when the current in the coil is 4.0 mA. What is the magnitude of the magnetic field? 0.50 T 1.6 T 0.21 T 1.2 T 0.37 T
To measure a magnetic field produced by an electromagnet, you use a circular coil of radius...
To measure a magnetic field produced by an electromagnet, you use a circular coil of radius 0.30 m with 25 loops (resistance of 0.30 O) that rests between the poles of the magnet and is connected to an ammeter. While the current in the electromagnet is reduced to zero in 1.5 sec, the ammeter in the coil shows a steady reading of 180 mA. Draw a picture of the experimental setup and determine everything you can about the electromagnet.
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field...
A square coil of wire of side 3.00 cm is placed in a uniform magnetic field of magnitude 1.75 T directed into the page as in the figure shown below. The coil has 38.0 turns and a resistance of 0.780 Ω. If the coil is rotated through an angle of 90.0° about the horizontal axis shown in 0.335 s, find the following. (a) the magnitude of the average emf induced in the coil during this rotation (b) the average current...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT