Question

In: Advanced Math

solve the given system ofdifferential equation by elimination. x’-2x-y=1 x+y’-4y=0

solve the given system ofdifferential equation by elimination.

x’-2x-y=1

x+y’-4y=0

Solutions

Expert Solution


Related Solutions

Solve the ordinary differential equation analytically: y''-4y-+3y = 5cos(x) + e^(2x) y(0)=1, y'(0)=0
Solve the ordinary differential equation analytically: y''-4y-+3y = 5cos(x) + e^(2x) y(0)=1, y'(0)=0
Solve the given differential equation, by the undetermined coefficient method: y"-4y'+4y=2x-sen2x (Principle of superposition)
Solve the given differential equation, by the undetermined coefficient method: y"-4y'+4y=2x-sen2x (Principle of superposition)
1) Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 4y −...
1) Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 4y − 6z = 56 x + 2y + 3z = −2 3x − 4y + 4z = −21 (x, y, z) = 2) Solve the system of linear equations using the Gauss-Jordan elimination method. 5x + 3y = 9 −2x + y = −8 (x, y) =
Solve the differential equation 2x^2y"-x(x-1)y'-y = 0 using the Frobenius Method
Solve the differential equation 2x^2y"-x(x-1)y'-y = 0 using the Frobenius Method
y"+3xy'-4y=0 Solve the differential equation.
y"+3xy'-4y=0 Solve the differential equation.
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Solve the following differential equation: y''+4y'+4y=u(t-1)-u(t-3), y(0)=0, y'(0)=0
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
Find y as a function of x if y''''−4y'''+4y''=−128e^{-2x} y(0)=2,  y′(0)=9,  y″(0)=−4,  y‴(0)=16. y(x)=?
Solve the given system of differential equations by systematic elimination. (D2 − 1)x − y =...
Solve the given system of differential equations by systematic elimination. (D2 − 1)x − y = 0 (D − 1)x + Dy = 0 I had this as my answer and webassign rejected it: (x(t), y(t)) = c_1e^t+e^{-\left(\frac{t}{2}\right)}\left(c_2\cos \left(\frac{\sqrt{3}}{2}t\right)+c_3\sin \left(\frac{\sqrt{3}}{2}t\right)\right),e^{-\left(\frac{t}{2}\right)}\left(\left(-\frac{3}{2}c_2-\frac{3\sqrt{3}.}{4}c_3\right)\cos \left(\frac{\sqrt{3}}{2}t\right)+\left(\frac{-3}{2}c_3+\frac{3\sqrt{3}}{4}c_2\right)\sin \left(\frac{\sqrt{3}}{2}t\right)\right)
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0)...
Solve the initial value problem: y'' + 4y' + 4y = 0; y(0) = 1, y'(0) = 0. Solve without the Laplace Transform, first, and then with the Laplace Transform.
solve y" + 4y = 5 tan(2x)
solve y" + 4y = 5 tan(2x)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT