Question

In: Advanced Math

We’ll say a polynomial f(x) ∈ R[x] is prime if the ideal (f(x)) ⊂ R[x] is...

We’ll say a polynomial f(x) ∈ R[x] is prime if the ideal (f(x)) ⊂ R[x] is prime. If F is a field with finitely many elements (e.g., Z/pZ), prove that f(x) ∈F [x] is prime if and only if it’s irreducible.

Solutions

Expert Solution


Related Solutions

f: R[x] to R is the map defined as f(p(x))=p(2) for any polynomial p(x) in R[x]....
f: R[x] to R is the map defined as f(p(x))=p(2) for any polynomial p(x) in R[x]. show that f is 1) a homomorphism 2) Ker(f)=(x-2)R[x] 3) prove that R[x]/Ker(f) is an isomorphism with R. (R in this case is the Reals so R[x]=a0+a1x+a1x^2...anx^n)
let R = Z x Z. P be the prime ideal {0} x Z and S...
let R = Z x Z. P be the prime ideal {0} x Z and S = R - P. Prove that S^-1R is isomorphic to Q.
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The...
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The polynomial f(x) factors in R[x] as the product of polynomials of degree 1 or 2. 2. The polynomial f(x) has n roots in C (counting multiplicity). In particular, there are non-negative integers r and s satisfying r+2s = n such that f(x) has r real roots and s pairs of non-real conjugate complex numbers as roots. 3. The polynomial f(x) factors in C[x] as...
Let R be a commutative ring with unity. If I is a prime ideal of R,...
Let R be a commutative ring with unity. If I is a prime ideal of R, prove that I[x] is a prime ideal of R[x].
Let R be a commutative domain, and let I be a prime ideal of R. (i)...
Let R be a commutative domain, and let I be a prime ideal of R. (i) Show that S defined as R \ I (the complement of I in R) is multiplicatively closed. (ii) By (i), we can construct the ring R1 = S-1R, as in the course. Let D = R / I. Show that the ideal of R1 generated by I, that is, IR1, is maximal, and R1 / I1R is isomorphic to the field of fractions of...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Given n ∈N and p prime number and consider the polynomial f (x) = xn (xn-2)+1-p...
Given n ∈N and p prime number and consider the polynomial f (x) = xn (xn-2)+1-p 1)Prove that f (x) is irreducible in Q [x] 2) If n = 1 and p = 3, find Q [x] / f (x)) 3) Show that indeed Q [x] / (f (x)) is a field in the previous paragraph PLEASE answer all subsections
f(x) = x ln x (a) Write the Taylor polynomial T3(x) for f(x) at center a...
f(x) = x ln x (a) Write the Taylor polynomial T3(x) for f(x) at center a = 1. (b) Use Taylor’s inequality to give an upper bound for |R3| = |f(x) − T3(x)| for |x − 1| ≤ 0.1. You don’t need to simplify the number.
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R)....
Prove that {f(x) ∈ F(R, R) : f(0) = 0} is a subspace of F(R, R). Explain why {f(x) : f(0) = 1} is not.
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f...
5. (a) Let f : R \ {−1} → R, f(x) = x+1. Show that f is injective, but not surjective. (b) Suppose g : R\{−1} → R\{a} is a function such that g(x) = x−1, where a ∈ R. Determine x+1 a, show that g is bijective and determine its inverse function.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT