Question

In: Physics

prove the sufficiency, let L be any closed contour in region R occupied by field A,...

prove the sufficiency, let L be any closed contour in region R occupied by field A, suppose curl A=0 everywhere in R. then, since R is simply connected. L is the boundary of some surface S lying entirely in R. By Stoke's theorem, integral of A =0. prove that A is a potential field. ( potential and irrotational fields). please in details thx:)

Solutions

Expert Solution

The vector potential field is defined as

A = grad p

where p is the scalar potential.

A must be conservative and irrational as curl A = 0


Related Solutions

Let R be a UFD and let F be a field of fractions for R. If...
Let R be a UFD and let F be a field of fractions for R. If f(α) = 0, where f ∈ R [x] is monic and α ∈ F, show that α ∈ R NOTE: A corollary is the fact that m ∈ Z and m is not an nth power in Z, then n√m is irrational.
prove that a ring R is a field if and only if (R-{0}, .) is an...
prove that a ring R is a field if and only if (R-{0}, .) is an abelian group
Let S ⊆ R and let G be an arbitrary isometry of R . Prove that...
Let S ⊆ R and let G be an arbitrary isometry of R . Prove that the symmetry group of G(S) is isomorphic to the symmetry group of S. Hint: If F is a symmetry of S, what is the corresponding symmetry of G(S)?
Prove that a subspace of R is compact if and only if it is closed and bounded.
Prove that a subspace of R is compact if and only if it is closed and bounded.
Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
Prove the theorem in the lecture:Euclidean Domains and UFD's Let F be a field, and let...
Prove the theorem in the lecture:Euclidean Domains and UFD's Let F be a field, and let p(x) in F[x]. Prove that (p(x)) is a maximal ideal in F[x] if and only if p(x) is irreducible over F.
Let f : R → R be a function. (a) Prove that f is continuous on...
Let f : R → R be a function. (a) Prove that f is continuous on R if and only if, for every open set U ⊆ R, the preimage f −1 (U) = {x ∈ R : f(x) ∈ U} is open. (b) Use part (a) to prove that if f is continuous on R, its zero set Z(f) = {x ∈ R : f(x) = 0} is closed.
Let R be the region that is inside the circle r = 3 sin θ and...
Let R be the region that is inside the circle r = 3 sin θ and outside the cardioid r = 1 + sin θ. Find the circumference of the region R.
Let R be the real line with the Euclidean topology. (a) Prove that R has a...
Let R be the real line with the Euclidean topology. (a) Prove that R has a countable base for its topology. (b) Prove that every open cover of R has a countable subcover.
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there...
Let S ⊆ R be a nonempty compact set and p ∈ R. Prove that there exists a point x_0 ∈ S which is “closest” to p. That is, prove that there exists x0 ∈ S such that |x_0 − p| is minimal.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT