Question

In: Physics

A 30.0 kg block is released at the top of a 20° frictionless incline. The block...

A 30.0 kg block is released at the top of a 20° frictionless incline. The block slides down the incline and compresses a spring (k=800 N/m) by 0.75 meters. What is the total distance the block traveled?

It should be 1.5m

Solutions

Expert Solution

Here,

let the total distance traveled is x

Now, distance moved down the incline is (x - 0.75)

Using conservation of energy

increase in spring

0.50 * k * x^2 = m * g * (x)* sin(20 degree)

0.50 * 800 * 0.75^2 = 30 * 9.8 * (x) * sin(20 degree)

solving for x

x = 2.25 m

the total distance traveled is 2.25 m


Related Solutions

A 3 kg block (block A) is released from rest at the top of a 20...
A 3 kg block (block A) is released from rest at the top of a 20 m long frictionless ramp that is 3 m high. At the same time, an identical block (block B) is released next to the ramp so that it drops straight down the same 3 m. Find the values for each of the following for the blocks just before they reach ground level. (a) gravitational potential energy Block A____J Block B____J (b) kinetic energy Block a____...
A block of mass 23 kg is set on top of a 37 degree incline with...
A block of mass 23 kg is set on top of a 37 degree incline with a hight of 13.5 m. The incline rests on a table that is 27.8 m above the ground on the planet Mercury (M = 3.285 * 10^23 kg, R = 1516 mi). The coefficient of kinetic friction between the block and the incline is 0.18. The gravitational acceleration on Mercury is 3.68 m/s. How far from the base of the table does the block...
Starting from rest, a 4.20-kg block slides 2.30 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.20-kg block slides 2.30 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is μk = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table....
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table. The coefficients of friction between the blocks are µs = 0.80 and µk = 0.20. (a) What is the maximum force F that can be applied to the 4.0 kg block if the 2.0 kg block is not to slide? ______N (b) If F is half this value, find the acceleration of each block. ______m/s2 (2.0 kg block) ______m/s2 (4.0 kg block) --Find the...
A small box is released from rest at the top of a frictionless ramp that is...
A small box is released from rest at the top of a frictionless ramp that is inclined at 36.9 0 above the horizontal. How long does it take the box to travel 8.00 m to the bottom of the incline?
A block with mass m1 = 8.5 kg is on an incline with an angle θ...
A block with mass m1 = 8.5 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? ) Now with friction, the acceleration is measured to be only a = 3.61 m/s2. What is the coefficient of kinetic friction between the incline and the...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.25 and μs = 0.275. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, what is the magnitude of the acceleration of the block after it...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 31° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.13 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
A block with mass m1 = 9.4 kg is on an incline with an angle θ...
A block with mass m1 = 9.4 kg is on an incline with an angle θ = 34° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? m/s2 2) Now with friction, the acceleration is measured to be only a = 3.73 m/s2. What is the coefficient of kinetic friction between the incline and...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT