Question

In: Physics

A mass of 2.33 kilograms is placed on a horizontal frictionlesssurface against an uncompressed spring...

A mass of 2.33 kilograms is placed on a horizontal frictionless surface against an uncompressed spring with spring constant 1,022.7 N/m. The mass is pushed against the spring until the spring is compressed a distance 0.35 m and then released. How high (vertically) in m does the mass rise from the original height before it stops (momentarily).

Solutions

Expert Solution

First use conservation of energy to find the speed just after the block separates from the spring

1/2kx2 = 1/2mv2

v = sqrt ( kx2 / m )

v = sqrt ( 1022.7 * 0.352 / 2.33)


v = 7.332 m/s

 

now, again use conservation of energy.

at the position where block stops (momentarily) , its K.E is zero. At the bottom , its P.E is zero,

so,

1/2mv2 = mgh

1/2v2 = gh

h = v2 / 2g

h = 7.3322 / 2 * 9.8

h = 2.743 m


Related Solutions

A block of mass 0.5 kg is pushed against a horizontal spring of negligible mass, compressing...
A block of mass 0.5 kg is pushed against a horizontal spring of negligible mass, compressing the spring a distance of Δx as shown in Figure 5. The spring constant is 450 N/m. When released the block travels along a frictionless horizontal surface to point B, the bottom of a vertical circular track of radius R = 1 m and continues to move up the track. The circular track is not smooth. The speed of the block at the bottom...
A small block with mass 1.50 kgkg is placed against a light spring that is compressed...
A small block with mass 1.50 kgkg is placed against a light spring that is compressed 0.250 mm. The spring has force constant 50.0 N/mN/m . The block and spring are released from rest, and the block travels along a horizontal surface for which the coefficient of kinetic friction between the block and surface is μkμk = 0.500. When the block has moved 0.250 mm and the spring has reached its equilibrium length, the block loses contact with the spring....
A block with a mass M is attached to a horizontal spring with a spring constant...
A block with a mass M is attached to a horizontal spring with a spring constant k. Then attached to this block is a pendulum with a very light string holding a mass m attached to it. What are the two equations of motion? (b) What would these equations be if we assumed small x and φ? (Do note that these equations will turn out a little messy, and in fact, the two equations involve both variables (i.e. they are...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 18.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A mass-spring system is in SHM in the horizontal direction. PART A If the mass is...
A mass-spring system is in SHM in the horizontal direction. PART A If the mass is 0.35 kg, the spring constant is 11 N/m , and the amplitude is 16 cm, what is the maximum speed of the mass? vmax = _____ m/s PART B Where does this occur? -at a half-amplitude position -at a third-amplitude position -at a quarter-amplitude position -at the equilibrium position PART C What is the speed at a half-amplitude position? v = _____ m/s
Spring Constants & Periods By varying the mass placed on a spring, the period of oscillation...
Spring Constants & Periods By varying the mass placed on a spring, the period of oscillation can be changed. When multiple data sets are collected and plotted, the spring constant can be determined. Before data was collected, the minimum and maximum masses were determined by visually watching the harmonic motion. For the minimum, a mass was chosen such that the resulting simple harmonic motion had an appreciable amplitude without significant dampening over ten periods. For the maximum, the mass was...
A 20.0-g object is placed against the free end of a spring (with spring constant k...
A 20.0-g object is placed against the free end of a spring (with spring constant k equal to 25.0 N/m) that is compressed 10.0 cm. Once released, the object slides 1.25 m across the tabletop and eventually lands 0.61 m from the edge of the table on the floor, as shown in the figure. Calculate the coefficient of friction between the table and the object. The sliding distance includes the compression of the spring and the tabletop is 1.00 m...
A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring
PLEASE ANSWER ALL 3 WILL THUMBS UP 1) A force of 540 newtons stretches a spring 3 meters. A mass of 45 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 8 m/s. Find the equation of motion. x(t)=? m 2) Find the charge on the capacitor and the current in an LC-series circuit when L = 0.1 h, C = 0.1 f, E(t) = 100 sin(γt)...
A force of 640 newtons stretches a spring 4 meters. A mass of 40 kilograms is...
A force of 640 newtons stretches a spring 4 meters. A mass of 40 kilograms is attached to the end of the spring and is initially released from the equilibrium position with an upward velocity of 10 m/s. Find the equation of motion.
A force of 720 Newton stretches a spring 4 meters. A mass of 45 Kilograms is...
A force of 720 Newton stretches a spring 4 meters. A mass of 45 Kilograms is attached to the spring and is initially released from the equilibrium position with an upward velocity of 6 meters per second. Find an equation of the motion.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT