In: Statistics and Probability
| 
 A market analyst wants to know if the new website he designed is showing increased page views per visit. A customer is randomly sent to one of two different websites, offering the same products, but with different designs. Assume that the data come from a distribution that is Normally distributed. The data is shown in the table to the right. Complete parts a through c below. 
 Calculate the test statistic. Let the difference of the sample means be y1-y2 Calculate the P-value. State the conclusion. b) Find a 95% confidence interval for the mean difference in page views from the two websites using the pooled degrees of freedom. c) The confidence interval for the unpooled variance is (-1.34, 1.74). Are your answers different from the interval where the variance is not pooled? Explain briefly why or why not.  | 
Ho :   µ1 - µ2 =   0  
           
   
Ha :   µ1-µ2 ╪   0  
           
   
          
           
   
Level of Significance ,    α =   
0.05          
       
          
           
   
Sample #1   ---->   1  
           
   
mean of sample 1,    x̅1=   6.500  
           
   
standard deviation of sample 1,   s1 =   
4.9000          
       
size of sample 1,    n1=   80  
           
   
          
           
   
Sample #2   ---->   2  
           
   
mean of sample 2,    x̅2=   6.300  
           
   
standard deviation of sample 2,   s2 =   
5.4000          
       
size of sample 2,    n2=   95  
           
   
          
           
   
difference in sample means =    x̅1-x̅2 =   
6.5000   -   6.3   =  
0.20  
          
           
   
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    5.1777  
           
   
std error , SE =    Sp*√(1/n1+1/n2) =   
0.7857          
       
          
           
   
t-statistic = ((x̅1-x̅2)-µd)/SE = (  
0.2000   -   0   ) /   
0.79   =   0.2546
          
           
   
Degree of freedom, DF=   n1+n2-2 =   
173          
       
t-critical value , t* =       
1.974   (excel formula =t.inv(α/2,df)  
           
Decision:   | t-stat | < | critical value |, so, Do
not Reject Ho          
           
p-value =       
0.7994   (excel function: =T.DIST.2T(t stat,df)
)          
   
Conclusion:     p-value>α , Do not reject null
hypothesis          
           
b)
Degree of freedom, DF=   n1+n2-2 =   
173          
   
t-critical value =    t α/2 =   
1.9738   (excel formula =t.inv(α/2,df)  
       
          
           
pooled std dev , Sp=   √([(n1 - 1)s1² + (n2 -
1)s2²]/(n1+n2-2)) =    5.1777  
           
          
           
std error , SE =    Sp*√(1/n1+1/n2) =   
0.7857          
   
margin of error, E = t*SE =    1.9738  
*   0.79   =   1.55  
          
           
difference of means =    x̅1-x̅2 =   
6.5000   -   6.300   =  
0.2000
confidence interval is       
           
   
Interval Lower Limit=   (x̅1-x̅2) - E =   
0.2000   -   1.5508   =  
-1.3508
Interval Upper Limit=   (x̅1-x̅2) + E =   
0.2000   +   1.5508   =  
1.7508
c)
No, because both interval contain null hypothesis zero, so, null hypothesis is not rejected