Question

In: Statistics and Probability

Question 6. Suppose the joint pdf of X and Y is f(x,y) = ax^2y for 0...

Question 6. Suppose the joint pdf of X and Y is

f(x,y) =

ax^2y for 0 < x < y 0 < y < 1

0 otherwise

Find a.

Find the correlation between X and Y.

Are X and Y independent? Explain.

Find the conditional variance Var(X||Y = 1)

Solutions

Expert Solution

Thank you! Hope this helps. Please give positive rating if satisfied!


Related Solutions

Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤...
Let X and Y have the joint pdf f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1. (i) Find the conditional means of X given Y, and Y given X. (ii) Find the conditional variance of X given Y. (iii) Find the correlation coefficient between X and Y.
The joint PDF of X and Y is given by f(x, y) = C, (0< x<y<1)....
The joint PDF of X and Y is given by f(x, y) = C, (0< x<y<1). a) Determine the value of C b) Determine the marginal distribution of X and compute E(X) and Var(X) c) Determine the marginal distribution of Y and compute E(Y) and Var(Y) d) Compute the correlation coefficient between X and Y
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0...
Let X and Y be continuous random variables with joint pdf f(x, y) = kxy^2 0 < x, 0 < y, x + y < 2 and 0 otherwise 1) Find  P[X ≥ 1|Y ≤ 1.5] 2) Find P[X ≥ 0.5|Y ≤ 1]
Suppose X and Y have joint probability density function f(x,y) = 6(x-y) when 0<y<x<1 and f(x,y)...
Suppose X and Y have joint probability density function f(x,y) = 6(x-y) when 0<y<x<1 and f(x,y) = 0 otherwise. (a) Indicate with a sketch the sample space in the x-y plane (b) Find the marginal density of X, fX(x) (c) Show that fX(x) is properly normalized, i.e., that it integrates to 1 on the sample space of X (d) Find the marginal density of Y, fY(y) (e) Show that fY(y) is properly normalized, i.e., that it integrates to 1 on...
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x <...
Let X and Y have joint PDF f(x) = c(e^-(x/λ + y/μ)) 0 < x < infinity and 0 < y < infinity with parameters λ > 0 and μ > 0 a) Find c such that this is a PDF. b) Show that X and Y are Independent c) What is P(1 < X < 2, 0 < Y < 5) ? Leave in exponential form d) Find the marginal distribution of Y, f(y) e) Find E(Y)
Question 3 Suppose that X and Y have the following joint probability distribution: f(x,y) x 0...
Question 3 Suppose that X and Y have the following joint probability distribution: f(x,y) x 0 1 2 y 0 0.12 0.08 0.06 1 0.04 0.19 0.12 2 0.04 0.05 0.3 Find the followings: E(Y)= Var(X)= Cov(X,Y)= Correlation(X,Y)=
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b)...
Let X and Y have joint pdf f(x,y)=k(x+y), for 0<=x<=1 and 0<=y<=1. a) Find k. b) Find the joint cumulative density function of (X,Y) c) Find the marginal pdf of X and Y. d) Find Pr[Y<X2] and Pr[X+Y>0.5]
Suppose the joint p.d.f of X and Y is f(x,y)= (6/7)(3x+y) if o<y<x<1, and 0 otherwise....
Suppose the joint p.d.f of X and Y is f(x,y)= (6/7)(3x+y) if o<y<x<1, and 0 otherwise. a. Find P(Y<(1/2)) b. Find Cov(X,Y)
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i)...
let the continuous random variables X and Y have the joint pdf: f(x,y)=6x , 0<x<y<1 i) find the marginal pdf of X and Y respectively, ii) the conditional pdf of Y given x, that is fY|X(y|x), iii) E(Y|x) and Corr(X,Y).
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤...
Let X be a continuous random variable with pdf: f(x) = ax^2 − 2ax, 0 ≤ x ≤ 2 (a) What should a be in order for this to be a legitimate p.d.f? (b) What is the distribution function (c.d.f.) for X? (c) What is Pr(0 ≤ X < 1)? Pr(X > 0.5)? Pr(X > 3)? (d) What is the 90th percentile value of this distribution? (Note: If you do this problem correctly, you will end up with a cubic...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT