In: Accounting
Find a primitive root, for all positive integral m, modulo each integer below.
(a) 7m (Hint: Using Corollary 5.15, find a common primitive root r modulo 7 and 72• The proof of Proposition 5.17 then guarantees that r is a primitive root modulo 72 for all positive integral m.)
(b) 11m
(c) 13m
(d) 17m
Solution:
A number g is a primitive root modulo n if every number co-prime to n is congruent to a power of g modulo n
(a).
Modulo 7
3^0 1 mod 7
3^1 3 mod 7
3^2 2 mod 7
3^3 6 mod 7
3^4 4 mod 7
3^5 5 mod 7
3^6 1 mod 7
Here we get all the possible results 1,2,3,4,5,6 [Numbers co-prime to 7]
Therefore 3 is a primitive root modulo 7
(b).
Modulo 11
2^0 1 mod 11
2^1 2 mod 11
2^2 4 mod 11
2^3 8 mod 11
2^4 5 mod 11
2^5 10 mod 11
2^6 9 mod 11
2^7 7 mod 11
2^8 3 mod 11
2^9 6 mod 11
2^10 1 mod 11
Here we get all the possible results 1,2,3,4,5,6,7,8,9,10 [Numbers co-prime to 11]
Therefore number 2 is primitive root modulo 11
(c).
Modulo 13
2^0 1 mod 13
2^1 2 mod 13
2^2 4 mod 13
2^3 8 mod 13
2^4 3 mod 13
2^5 6 mod 13
2^6 12 mod 13
2^7 11 mod 13
2^8 9 mod 13
2^9 5 mod 13
2^10 10 mod 13
2^11 7 mod 13
2^12 1 mod 13
Here we get all the possible results 1,2,3,4,5,6,7,8,9,10,11,12 [Numbers co-prime to 13]
Therefore 2 is a primitive root modulo 13
(d).
Modulo 17
3^0 1 mod 17
3^1 3 mod 17
3^2 9 mod 17
3^3 10 mod 17
3^4 13 mod 17
3^5 5 mod 17
3^6 15 mod 17
3^7 11 mod 17
3^8 16 mod 17
3^9 14 mod 17
3^10 8 mod 17
3^11 7 mod 17
3^12 4 mod 17
3^13 12 mod 17
3^14 2 mod 17
3^15 6 mod 17
3^16 1 mod 17
We get all the possible results 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
Therefore 3 is a primitive root modulo 17
Thank you