Question

In: Math

Let A be a 2×2 symmetric matrix. Show that if det A > 0 and trace(A)...

Let A be a 2×2 symmetric matrix. Show that if det A > 0 and trace(A) > 0 then A is positive definite. (trace of a matrix is sum of all diagonal entires.)

Solutions

Expert Solution


Related Solutions

Obtain a spectral decomposition for the symmetric matrix A = [0 2 2, 2 0 2,...
Obtain a spectral decomposition for the symmetric matrix A = [0 2 2, 2 0 2, 2 2 0] (that means the first row is 022, then below that 202, etc.) , whose characteristic polynomial is −(λ + 2)^2 (λ − 4) If you could provide a step-by-step way to solve this I'd greatly appreciate it.
Show that the hat matrix is idempotent (i.e. by showing that ?2 = ?) and symmetric.
Show that the hat matrix is idempotent (i.e. by showing that ?2 = ?) and symmetric.
b) a matrix is skew symmetric if AT=-A.If A is a skew-symmetric matrix of odd order,show...
b) a matrix is skew symmetric if AT=-A.If A is a skew-symmetric matrix of odd order,show that A is not invertible c)Let A and B be n*n matrixes with detA=detB not equal to 0,If a and b are non zero real numbers show that det (aA+bB-1)=det(aB+bA-1)
Q. Let A be a real n×n matrix. (a) Show that A =0 if AA^T =0....
Q. Let A be a real n×n matrix. (a) Show that A =0 if AA^T =0. (b) Show that A is symmetric if and only if A^2= AA^T
verify that the function det has the following properties 1. det(... ,v,..., v,...)=0 2. det(...,cv+dw,...)=c*det(...,v,...)+d*det(...,w,...) 3....
verify that the function det has the following properties 1. det(... ,v,..., v,...)=0 2. det(...,cv+dw,...)=c*det(...,v,...)+d*det(...,w,...) 3. use the above properties and normalization to prove that A= det(...,v+cw,...w,...)=det(...,v,...,w,...) B=det(...,v,...,w,...)= (-1)*det(...,w,...,v,...) and C= det [diag (λ1, ... , λn ) ] = Πiλi
Consider A, B and C, all nxn matrices. Show that: 1) det(A)=det(A^T) 2) if C was...
Consider A, B and C, all nxn matrices. Show that: 1) det(A)=det(A^T) 2) if C was obtained from A by changing the i-th row (column) with the j-th row (column). Show that det(C)=-det(A) 3) det(AB)=det(A)det(B) 4) Let C be a matrix obtained from A by multiplying a row by c ∈ F. Show that det(B)=c · det(A)
show that a 2x2 complex matrix A is nilpotent if and only if Tr(A)=0 and Tr(A^2)=0....
show that a 2x2 complex matrix A is nilpotent if and only if Tr(A)=0 and Tr(A^2)=0. give an example of a complex 2x2 matrix which is not nilpotent but whose trace is 0
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric,...
Let A ∈ Mat n×n(R) be a real square matrix. (a) Suppose that A is symmetric, positive semi-definite, and orthogonal. Prove that A is the identity matrix. (b) Suppose that A satisfies A = −A^T . Prove that if λ ∈ C is an eigenvalue of A, then λ¯ = −λ. From now on, we assume that A is idempotent, i.e. A^2 = A. (c) Prove that if λ is an eigenvalue of A, then λ is equal to 0...
Let A be an n × n real symmetric matrix with its row and column sums...
Let A be an n × n real symmetric matrix with its row and column sums both equal to 0. Let λ1, . . . , λn be the eigenvalues of A, with λn = 0, and with corresponding eigenvectors v1,...,vn (these exist because A is real symmetric). Note that vn = (1, . . . , 1). Let A[i] be the result of deleting the ith row and column. Prove that detA[i] = (λ1···λn-1)/n. Thus, the number of spanning...
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0...
Find a matrix P that diagonalizes the matrix A = [ 2 0 ?2 / 0 3 0 / 0 0 3 ] and compute P ?1AP.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT