Question

In: Math

b) a matrix is skew symmetric if AT=-A.If A is a skew-symmetric matrix of odd order,show...

b) a matrix is skew symmetric if AT=-A.If A is a skew-symmetric matrix of odd order,show that A is not invertible

c)Let A and B be n*n matrixes with detA=detB not equal to 0,If a and b are non zero real numbers show that det (aA+bB-1)=det(aB+bA-1)

Solutions

Expert Solution


Related Solutions

Show that the hat matrix is idempotent (i.e. by showing that ?2 = ?) and symmetric.
Show that the hat matrix is idempotent (i.e. by showing that ?2 = ?) and symmetric.
Let A be a 2×2 symmetric matrix. Show that if det A > 0 and trace(A)...
Let A be a 2×2 symmetric matrix. Show that if det A > 0 and trace(A) > 0 then A is positive definite. (trace of a matrix is sum of all diagonal entires.)
What property must a symmetric 3 × 3 matrix have in order for the equation xTAx...
What property must a symmetric 3 × 3 matrix have in order for the equation xTAx = 1 to represent an ellipsoid? (6 points)(Kindly provide a long, comprehensive proof)
Is it true that every symmetric positive definite matrix is necessarily nonsingular? (Need to show some...
Is it true that every symmetric positive definite matrix is necessarily nonsingular? (Need to show some form of proof, not just yes or no answer) Please add some commentary for better understanding.
Let H be the subset of all skew-symmetric matrices in M3x3 a.) prove that H is...
Let H be the subset of all skew-symmetric matrices in M3x3 a.) prove that H is a subspace of M3x3 by checking all three conditions in the definition of subspace. b.) Find a basis for H. Prove that your basis is actually a basis for H by showing it is both linearly independent and spans H. c.) what is the dim(H)
Show that the inverse of an invertible matrix A is unique. That is, suppose that B...
Show that the inverse of an invertible matrix A is unique. That is, suppose that B is any matrix such that AB = BA = I. Then show that B = A−1 .
A square matrix A is said to be symmetric if its transpose AT satisfies AT= A,...
A square matrix A is said to be symmetric if its transpose AT satisfies AT= A, and a complex-valued square matrix A is said to be Hermitian if its conjugate transpose AH = (A)T = AT satisfies AH = A. Thus, a real-valued square matrix A is symmetric if and only if it is Hermitian. Which of the following is a vector space? (a) The set of all n xn real-valued symmetric matrices over R. (b) The set of all...
Create a square, almost symmetric 4 X 4 matrix B with values 1, 2, 3 and...
Create a square, almost symmetric 4 X 4 matrix B with values 1, 2, 3 and 4 on the diagonal. Let values off diagonal be between 0.01 and 0.2. Almost symmetric matrix is not a scientific term. It just means that most of the off diagonal terms on transpose positions are close in value: 1. Determine matrix BINV which is an inverse of matrix B; 2. Demonstrate that the matrix multiplied by its inverse produces a unit matrix. Unit matrix...
(a) Show that the diagonal entries of a positive definite matrix are positive numbers. (b) Show...
(a) Show that the diagonal entries of a positive definite matrix are positive numbers. (b) Show that if B is a nonsingular square matrix, then BTB is an SPD matrix.(Hint. you simply need to show the positive definiteness, which does requires the nonsingularity of B.)
For the following symmetric populations and odd sample size n = 2m + 1, derive the...
For the following symmetric populations and odd sample size n = 2m + 1, derive the asymptotic distributions of the sample mean and sample median, calculate the asymptotic relative efficiency of the median to the mean and identify which is more efficient. (a) Normal(μ,σ2) (b) Uniform(0,β) (c) Beta(α,α)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT