Question

In: Physics

(a) A light, rigid rod of length 1.00 m joins two particles, with masses m-4.00 kg...

(a) A light, rigid rod of length 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below . Determine the angular momentum of the system about the origin when the speed of each particle is 4.40 m/s. (Enter the magnitude to at least two decimal places in kg·m2/s. 

image.png


(b) What I? What would be the new angular momentum of the system (in kg m2/s) if each of the masses were instead a solid sphere 11.5 cm in diameter? 

Solutions

Expert Solution


Related Solutions

A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses...
(a) A light, rigid rod of length ℓ = 1.00 m joins two particles, with masses m = 4.00 kg and m, = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below). Determine the angular momentum of the system about the origin when the speed of each particle is 7.60 m/s. (Enter the magnitude to at least two decimal places in kg. m2/s.) (b) What If? What would...
The masses and coordinates of three particles are as follows: 20.0 kg, (0.50, 1.00) m; 361.0...
The masses and coordinates of three particles are as follows: 20.0 kg, (0.50, 1.00) m; 361.0 kg, (-1.00, -1.00) m; 54.0 kg, (0.00, -0.50) m. What is the gravitational force on a 20.0 kg sphere located at the origin due to the other spheres, magnitude and direction? Give the direction as an angle in degrees counter clockwise with respect to the the + x-axis.
A pendulum consists of a light rigid rod of length 250 mm, with two identical uniform...
A pendulum consists of a light rigid rod of length 250 mm, with two identical uniform solid spheres of radius 50 mm attached one on either side of its lower end. Find the period of small oscillations (a) perpendicular to the line of centers and (b) along it.
A 3.1 kg rod of length 5.1 m has at opposite ends point masses of 4.0...
A 3.1 kg rod of length 5.1 m has at opposite ends point masses of 4.0 kg and 6.0 kg. a)Will the center of mass of this system be nearer to the 4.0-kg mass, nearer to the 6.0-kgmass, or at the center of the rod?    b) Where is the center of mass of the system? (F-net=M[Vcm/t] xCM= (summation of all mass by distance)/system of mass Diagram please, not fully understand the system. getting 5.03m
Let's consider a rigid system with three particles. Masses of these particles m1 = 3 kgs,...
Let's consider a rigid system with three particles. Masses of these particles m1 = 3 kgs, m2 = 4 kg, m3 = 2 kgs, and their positions are (1, 0, 1), (1, 1, -1) and Let it be (1, -1, 0). Locations are given in meters. a) What is the inertia tensor of the system? b) What are the main moments of inertia? c) What are the main axes? THERE IS NO MORE INFORMATION AND PICTURE FOR THIS QUESTION, TY...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes of negligible mass. The rope at the lower end is horizontal. The rope at the upper end makes an angle φ = 30.0◦ with the vertical. φ θ (a) Draw a free body diagram for the rod. (b) What is the tension in the upper rope? (c) What is the tension in the lower (horizontal) rope? (d) What is the angle θ the rod...
In the figure, three 0.03 kg particles have been glued to a rod of length L...
In the figure, three 0.03 kg particles have been glued to a rod of length L = 9 cm and negligible mass and can rotate around a perpendicular axis through point O at one end. How much work is required to change the rotational rate (a) from 0 to 20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 40.0 rad/s to 60.0 rad/s? (d) What is the slope of a plot of the assembly's kinetic energy (in...
Two uniform solid spheres are joined by a light rigid rod to form a dumbbell. The...
Two uniform solid spheres are joined by a light rigid rod to form a dumbbell. The spheres are identical, and each has mass M/2. One end of a spring is attached to the center of the rod, the spring is stretched perpendicular to the rod, and the other end of the spring is attached to a wall. The dumbbell rests on a horizontal surface. Friction between the surface and the spheres prevents slipping. The system is released from rest. a)...
Two objects with masses of 3.20 kg and 8.00 kg are connected by a light string...
Two objects with masses of 3.20 kg and 8.00 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. (a) Determine the tension in the string. (Enter the magnitude only.) N (b) Determine the acceleration of each object. (Enter the magnitude only.) m/s2 (c) Determine the distance each object will move in the first second of motion if both objects start from rest. m
A 5.0 kg rod with a length of 2.8 m has an axis of rotation at...
A 5.0 kg rod with a length of 2.8 m has an axis of rotation at its center. Looking at the rod with its axis perpendicular to this page, a force of 14.5 N at 68o is applied to the rod 1.1 m from the axis of rotation. This torque would angularly accelerate the rod in a counter-clockwise direction. Assume that the torque continues to be applied during the motion consider in this problem and that there are no other...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT