In: Physics
The masses and coordinates of three particles are as follows: 20.0 kg, (0.50, 1.00) m; 361.0 kg, (-1.00, -1.00) m; 54.0 kg, (0.00, -0.50) m. What is the gravitational force on a 20.0 kg sphere located at the origin due to the other spheres, magnitude and direction? Give the direction as an angle in degrees counter clockwise with respect to the the + x-axis.
let
m1 = 20 kg at (0.50,1.00)m
m2 = 361 kg, at (-1.00, -1.00) m
m3 = 54 kg, at (0.00, -0.50 )m
m = 20.0 kg at origin
magnitude of force exerted by m1 on m, F1 = G*m1*m/r1^2
= 6.67*10^-7*20*20/(0.5^2 + 1^2)
= 2.13*10^-4 N
direction of F1: theta1 = tan^-1(1/0.5)
= 63.4 degrees above +x axis
magnitude of force exerted by m2 on m, F2 =
G*m2*m/r2^2
= 6.67*10^-7*361*20/(1^2 + 1^2)
= 2.41*10^-3 N
direction of F2: theta1 = tan^-1(-1/-1)
= 45 degrees below -x axis
magnitude of force exerted by m3 on m, F3 =
G*m3*m/r3^2
= 6.67*10^-7*54*20/0.5^2
= 2.88*10^-3 N
direction of F3: theta3 : along -y axis
x-component of net force, Fnetx = F1x + F2x + F3x
= 2.13*10^-4*cos(63.4) + (-2.41*10^-3)*cos(45) + 0
= -1.61*10^-3 N
y-component of net force, Fnety = F1y + F2y + F3y
= 2.13*10^-4*sin(63.4) + (-2.41*10^-3)*sin(45) + (-2.88*10^-3)
= -4.40*10^-3 N
magnitude of net force, Fnet = sqrt(Fnetx^2 + Fnety^2)
= sqrt(1.61^2 + 4.4^2)*10^-3
= 4.68*10^-3 N <<<<<<<<<<<-------------------------Answer
direction : theta = tan^-1(Fnety/Fnetx)
= tan^-1((-4.4)/(-1.61))
= 70.0 degrees below -x axis
= 250 degrees with +x axis in counter clocwise direction <<<<<<<<<<<--------------------Answer