Question

In: Physics

In the figure, three 0.03 kg particles have been glued to a rod of length L...

In the figure, three 0.03 kg particles have been glued to a rod of length L = 9 cm and negligible mass and can rotate around a perpendicular axis through point O at one end. How much work is required to change the rotational rate (a) from 0 to 20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and (c) from 40.0 rad/s to 60.0 rad/s? (d) What is the slope of a plot of the assembly's kinetic energy (in joules) versus the square of its rotation rate (in radians-squared per second-squared)?


Solutions

Expert Solution


Related Solutions

In the figure, a conducting rod of length L = 29.0 cm moves in a magnetic...
In the figure, a conducting rod of length L = 29.0 cm moves in a magnetic field B⃗ of magnitude 0.390 T directed into the plane of the figure. The rod moves with speed v = 6.00 m/s in the direction shown. When the charges in the rod are in equilibrium, what is the magnitude E of the electric field within the rod? What is the magnitude Vba of the potential difference between the ends of the rod? What is...
We have a metal rod of length L. The rod is on the x-axis extending from...
We have a metal rod of length L. The rod is on the x-axis extending from 0 to L. We select a point X on the rod randomly and uniformly and cut the rod at X. This gives two smaller rods of lengths X and L − X. We select the longer piece (if the two pieces are of equal length we select one of them) and cut it again randomly and uniformly to get three pieces. What is the...
(a) A light, rigid rod of length 1.00 m joins two particles, with masses m-4.00 kg...
(a) A light, rigid rod of length 1.00 m joins two particles, with masses m1 = 4.00 kg and m2 = 3.00 kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod (see figure below . Determine the angular momentum of the system about the origin when the speed of each particle is 4.40 m/s. (Enter the magnitude to at least two decimal places in kg·m2/s. (b) What I? What would be...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 3.7 seconds. Calculate the angular momentum of the rod at both the points . Explain the...
A rod of length L has a charge per unit length λ. The rod rotates around...
A rod of length L has a charge per unit length λ. The rod rotates around its center at angular frequency ω. Using the dipole approximation, find the power radiated by the rotating rod.
In the figure, a 53.3 kg uniform square sign, of edge length L = 1.67 m,...
In the figure, a 53.3 kg uniform square sign, of edge length L = 1.67 m, is hung from a horizontal rod of length dh = 2.71 m and negligible mass. A cable is attached to the end of the rod and to a point on the wall at distance dv = 4.41 m above the point where the rod is hinged to the wall. (a) What is the tension in the cable? (b) What is the horizontal component of...
Given is the rod of length L with the linear charge of density ?=?/? . The...
Given is the rod of length L with the linear charge of density ?=?/? . The rod lies on the x axis with its midpoint at the origin. Find the electric field vector on y axis resulting from such continuous system of charge at distance y from the origin. Use this result to obtain the expression for electric field at distance y from the infinitely long wire.
LAB QUESTION A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected...
LAB QUESTION A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 3.7 seconds. Change of angular momentum in the spinning rod Mass (Kg) Moment of...
The figure is an overhead view of a thin uniform rod of length 0.467 m and...
The figure is an overhead view of a thin uniform rod of length 0.467 m and mass M rotating horizontally at angular speed 15.7 rad/s about an axis through its center. A particle of mass M/3 initially attached to one end is ejected from the rod and travels along a path that is perpendicular to the rod at the instant of ejection. If the particle's speed vp is 3.32 m/s greater than the speed of the rod end just after...
In the figure the four particles form a square of edge length a = 6.40 cm...
In the figure the four particles form a square of edge length a = 6.40 cm and have charges q1 = 8.91 nC, q2 = -19.0 nC, q3 = 19.0 nC, and q4 = -8.91 nC. What is the magnitude of the net electric field produced by the particles at the square's center?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT