In: Statistics and Probability
Given two independent random samples with the following results:
| 
 n1=122  | 
n2=329 | 
| x1=43 | x2=89 | 
Can it be concluded that there is a difference between the two population proportions? Use a significance level of α=0.1α=0.1 for the test.
Step 5 of 6 :
Find the P-value for the hypothesis test. Round your answer to four decimal places.
CORRECT ANSWER: P= 0.0930
CORRECT ANSWER: P= 0.0930
CORRECT ANSWER: P= 0.0930
CORRECT ANSWER: P= 0.0930
CORRECT ANSWER: P= 0.0930
Ho:   p1 - p2 =   0  
       
Ha:   p1 - p2 ╪   0  
       
          
       
sample #1   ----->      
       
first sample size,     n1=  
122          
number of successes, sample 1 =     x1=  
43          
proportion success of sample 1 , p̂1=  
x1/n1=   0.3524590      
   
          
       
sample #2   ----->      
       
second sample size,     n2 =   
329          
number of successes, sample 2 =     x2 =
   89      
   
proportion success of sample 1 , p̂ 2=   x2/n2 =
   0.270517      
   
          
       
difference in sample proportions, p̂1 - p̂2 =    
0.3525   -   0.2705   =  
0.0819
          
       
pooled proportion , p =   (x1+x2)/(n1+n2)=  
0.2926829          
          
       
std error ,SE =    =SQRT(p*(1-p)*(1/n1+
1/n2)=   0.04823      
   
Z-statistic = (p̂1 - p̂2)/SE = (  
0.082   /   0.0482   ) =  
1.6990
          
       
  
p-value =        0.0891
≈0.0930 [excel formula =2*NORMSDIST(-z)]  
   
decision :    p-value<α,Reject null hypothesis
          
   
it can be concluded that there is a difference between the
two population proportions