Question

In: Economics

Part 2: Transforming data and computing descriptive statistics Create a quarterly real GDP series by dividing...

Part 2: Transforming data and computing descriptive statistics

Create a quarterly real GDP series by dividing nominal GDP by the GDP deflator. Also, create a money velocity series as PY/M where P is the price level, Y is real GDP, and M is the M3 money supply measure.

a. Plot the velocity of money (produce a graph similar to Figure 8.2 on page 212 of the textbook). Has velocity risen or fallen over the sample period? b. What is the mean and standard deviation of M3 velocity?

picture from textbook: https://media.cheggcdn.com/media%2Fb3d%2Fb3d56712-5053-405f-83e0-88009e1d6240%2FphpGAezM0.png

data to be used:

observation_date MABMM301CAQ189S observation_date CANGDPDEFQISMEI Quarterly v62295562 - Gross domestic product at market prices (x 1,000,000)
1981-01-01 2.04311E+11 1981-01-01 42.69811116 Q1 1981 354,784
1981-04-01 2.07984E+11 1981-04-01 43.66104146 Q2 1981 366,788
1981-07-01 2.16848E+11 1981-07-01 44.62899825 Q3 1981 371,560
1981-10-01 2.18082E+11 1981-10-01 45.29084386 Q4 1981 375,352
1982-01-01 2.17479E+11 1982-01-01 46.60831697 Q1 1982 381,676
1982-04-01 2.19886E+11 1982-04-01 47.57980057 Q2 1982 385,140
1982-07-01 2.2233E+11 1982-07-01 48.37395895 Q3 1982 388,116
1982-10-01 2.24304E+11 1982-10-01 49.3332838 Q4 1982 392,160
1983-01-01 2.2614E+11 1983-01-01 49.71327644 Q1 1983 401,680
1983-04-01 2.24478E+11 1983-04-01 50.26292877 Q2 1983 414,192
1983-07-01 2.25279E+11 1983-07-01 51.27358864 Q3 1983 427,308
1983-10-01 2.27179E+11 1983-10-01 51.61005878 Q4 1983 435,584
1984-01-01 2.283E+11 1984-01-01 51.97043324 Q1 1984 446,148
1984-04-01 2.32617E+11 1984-04-01 52.30782428 Q2 1984 457,828
1984-07-01 2.37141E+11 1984-07-01 52.72343939 Q3 1984 463,424
1984-10-01 2.40677E+11 1984-10-01 53.04197052 Q4 1984 473,572
1985-01-01 2.44981E+11 1985-01-01 53.42486468 Q1 1985 484,236
1985-04-01 2.48915E+11 1985-04-01 54.26513634 Q2 1985 493,432
1985-07-01 2.5245E+11 1985-07-01 54.50504061 Q3 1985 501,888
1985-10-01 2.5701E+11 1985-10-01 54.84025435 Q4 1985 512,744
1986-01-01 2.64237E+11 1986-01-01 55.25634718 Q1 1986 516,520
1986-04-01 2.68411E+11 1986-04-01 55.49059389 Q2 1986 521,696
1986-07-01 2.71948E+11 1986-07-01 56.09128688 Q3 1986 528,016
1986-10-01 2.8153E+11 1986-10-01 56.87836721 Q4 1986 531,568
1987-01-01 2.91177E+11 1987-01-01 57.53317263 Q1 1987 550,140
1987-04-01 2.99965E+11 1987-04-01 58.33295861 Q2 1987 565,020
1987-07-01 3.05585E+11 1987-07-01 58.89916591 Q3 1987 579,244
1987-10-01 3.08066E+11 1987-10-01 59.55513344 Q4 1987 593,300
1988-01-01 3.12459E+11 1988-01-01 60.19836959 Q1 1988 608,480
1988-04-01 3.22487E+11 1988-04-01 60.66882712 Q2 1988 618,684
1988-07-01 3.34801E+11 1988-07-01 61.66399317 Q3 1988 628,884
1988-10-01 3.42958E+11 1988-10-01 62.46758329 Q4 1988 641,556
1989-01-01 3.51835E+11 1989-01-01 62.92301878 Q1 1989 653,604
1989-04-01 3.62677E+11 1989-04-01 63.98918575 Q2 1989 667,232
1989-07-01 3.73418E+11 1989-07-01 64.65157352 Q3 1989 676,572
1989-10-01 3.85482E+11 1989-10-01 64.99380354 Q4 1989 678,696
1990-01-01 3.95554E+11 1990-01-01 65.40531748 Q1 1990 689,404
1990-04-01 4.0366E+11 1990-04-01 66.03354097 Q2 1990 693,132
1990-07-01 4.10993E+11 1990-07-01 66.70745429 Q3 1990 695,180
1990-10-01 4.1872E+11 1990-10-01 67.22290923 Q4 1990 694,272
1991-01-01 4.27352E+11 1991-01-01 67.93588676 Q1 1991 691,484
1991-04-01 4.32806E+11 1991-04-01 68.36517541 Q2 1991 699,036
1991-07-01 4.33277E+11 1991-07-01 68.59406171 Q3 1991 702,272
1991-10-01 4.39453E+11 1991-10-01 68.66059067 Q4 1991 704,220
1992-01-01 4.45823E+11 1992-01-01 68.94091388 Q1 1992 707,560
1992-04-01 4.50337E+11 1992-04-01 69.32202186 Q2 1992 712,328
1992-07-01 4.57429E+11 1992-07-01 69.62116203 Q3 1992 719,252
1992-10-01 4.64677E+11 1992-10-01 69.77651809 Q4 1992 724,936
1993-01-01 4.70009E+11 1993-01-01 69.96565871 Q1 1993 731,528
1993-04-01 4.72942E+11 1993-04-01 70.41575784 Q2 1993 742,932
1993-07-01 4.75799E+11 1993-07-01 70.19167988 Q3 1993 747,640
1993-10-01 4.79652E+11 1993-10-01 70.70364286 Q4 1993 756,332
1994-01-01 4.8357E+11 1994-01-01 70.95633662 Q1 1994 770,204
1994-04-01 4.89883E+11 1994-04-01 70.93029423 Q2 1994 781,204
1994-07-01 5.00109E+11 1994-07-01 71.5711307 Q3 1994 798,332
1994-10-01 5.03525E+11 1994-10-01 71.94169718 Q4 1994 808,288
1995-01-01 5.07562E+11 1995-01-01 72.43909165 Q1 1995 821,384
1995-04-01 5.15417E+11 1995-04-01 72.8401001 Q2 1995 826,212
1995-07-01 5.24551E+11 1995-07-01 73.10778253 Q3 1995 830,332
1995-10-01 5.29711E+11 1995-10-01 73.48182065 Q4 1995 837,964
1996-01-01 5.39297E+11 1996-01-01 73.73975025 Q1 1996 841,428
1996-04-01 5.45922E+11 1996-04-01 73.98403847 Q2 1996 850,092
1996-07-01 5.50767E+11 1996-07-01 74.34930978 Q3 1996 861,784
1996-10-01 5.55781E+11 1996-10-01 74.87572976 Q4 1996 874,788
1997-01-01 5.65662E+11 1997-01-01 75.08368347 Q1 1997 888,792
1997-04-01 5.70634E+11 1997-04-01 74.88081067 Q2 1997 896,372
1997-07-01 5.75825E+11 1997-07-01 75.08607625 Q3 1997 909,568
1997-10-01 5.85016E+11 1997-10-01 75.29788696 Q4 1997 920,876
1998-01-01 5.88563E+11 1998-01-01 75.10463509 Q1 1998 931,392
1998-04-01 5.92121E+11 1998-04-01 75.11357127 Q2 1998 931,908
1998-07-01 5.97459E+11 1998-07-01 74.72571561 Q3 1998 935,696
1998-10-01 6.02599E+11 1998-10-01 74.87131258 Q4 1998 950,184
1999-01-01 6.02129E+11 1999-01-01 75.21325796 Q1 1999 971,824
1999-04-01 6.13187E+11 1999-04-01 76.03927032 Q2 1999 990,748
1999-07-01 6.21062E+11 1999-07-01 76.91249304 Q3 1999 1,017,736
1999-10-01 6.32911E+11 1999-10-01 77.30843557 Q4 1999 1,037,516
2000-01-01 6.48037E+11 2000-01-01 78.22530767 Q1 2000 1,066,576
2000-04-01 6.58564E+11 2000-04-01 79.42312702 Q2 2000 1,095,808
2000-07-01 6.74681E+11 2000-07-01 80.21978873 Q3 2000 1,117,980
2000-10-01 6.83844E+11 2000-10-01 80.87774982 Q4 2000 1,129,156
2001-01-01 6.93689E+11 2001-01-01 81.65841791 Q1 2001 1,145,988
2001-04-01 6.96378E+11 2001-04-01 81.65117527 Q2 2001 1,148,844
2001-07-01 7.0454E+11 2001-07-01 80.70759895 Q3 2001 1,134,708
2001-10-01 7.1682E+11 2001-10-01 80.0583262 Q4 2001 1,132,480
2002-01-01 7.29263E+11 2002-01-01 80.41861287 Q1 2002 1,154,524
2002-04-01 7.34895E+11 2002-04-01 81.83423125 Q2 2002 1,181,544
2002-07-01 7.50367E+11 2002-07-01 82.38631683 Q3 2002 1,199,908
2002-10-01 7.58437E+11 2002-10-01 83.42950962 Q4 2002 1,221,832
2003-01-01 7.61874E+11 2003-01-01 84.59159619 Q1 2003 1,245,676
2003-04-01 7.82063E+11 2003-04-01 83.87561141 Q2 2003 1,233,300
2003-07-01 7.96029E+11 2003-07-01 84.95635352 Q3 2003 1,253,900
2003-10-01 8.07003E+11 2003-10-01 85.3524376 Q4 2003 1,268,384
2004-01-01 8.30867E+11 2004-01-01 86.29841734 Q1 2004 1,291,688
2004-04-01 8.50393E+11 2004-04-01 87.39335372 Q2 2004 1,323,544
2004-07-01 8.63961E+11 2004-07-01 87.89404677 Q3 2004 1,346,952
2004-10-01 8.85819E+11 2004-10-01 88.27669893 Q4 2004 1,362,528
2005-01-01 9.14545E+11 2005-01-01 88.82847112 Q1 2005 1,375,720
2005-04-01 9.38963E+11 2005-04-01 89.42817592 Q2 2005 1,394,868
2005-07-01 9.54247E+11 2005-07-01 90.72483988 Q3 2005 1,432,508
2005-10-01 9.62155E+11 2005-10-01 91.87374486 Q4 2005 1,465,016
2006-01-01 9.81505E+11 2006-01-01 91.54859597 Q1 2006 1,471,532
2006-04-01 9.99682E+11 2006-04-01 92.42400195 Q2 2006 1,486,320
2006-07-01 1.02234E+12 2006-07-01 93.05784619 Q3 2006 1,500,672
2006-10-01 1.04904E+12 2006-10-01 93.3031751 Q4 2006 1,510,304
2007-01-01 1.07602E+12 2007-01-01 94.71213816 Q1 2007 1,543,024
2007-04-01 1.10249E+12 2007-04-01 95.59095835 Q2 2007 1,572,372
2007-07-01 1.14279E+12 2007-07-01 95.53638302 Q3 2007 1,578,004
2007-10-01 1.17806E+12 2007-10-01 96.77660407 Q4 2007 1,600,728
2008-01-01 1.21117E+12 2008-01-01 98.67959821 Q1 2008 1,633,172
2008-04-01 1.25192E+12 2008-04-01 100.7423479 Q2 2008 1,673,096
2008-07-01 1.28028E+12 2008-07-01 100.9439217 Q3 2008 1,690,428
2008-10-01 1.30447E+12 2008-10-01 97.56793201 Q4 2008 1,614,996
2009-01-01 1.29867E+12 2009-01-01 96.02749385 Q1 2009 1,553,180
2009-04-01 1.29828E+12 2009-04-01 96.54850348 Q2 2009 1,544,376
2009-07-01 1.3059E+12 2009-07-01 97.33262931 Q3 2009 1,563,964
2009-10-01 1.31498E+12 2009-10-01 98.90114935 Q4 2009 1,607,940
2010-01-01 1.32874E+12 2010-01-01 99.68889426 Q1 2010 1,640,056
2010-04-01 1.36292E+12 2010-04-01 99.73092225 Q2 2010 1,649,184
2010-07-01 1.39202E+12 2010-07-01 99.76256572 Q3 2010 1,661,488
2010-10-01 1.40577E+12 2010-10-01 100.8028477 Q4 2010 1,697,792
2011-01-01 1.43135E+12 2011-01-01 102.1875932 Q1 2011 1,733,840
2011-04-01 1.45784E+12 2011-04-01 103.2762484 Q2 2011 1,755,640
2011-07-01 1.48928E+12 2011-07-01 103.3687047 Q3 2011 1,781,600
2011-10-01 1.52151E+12 2011-10-01 104.1128451 Q4 2011 1,808,604
2012-01-01 1.55116E+12 2012-01-01 104.2014187 Q1 2012 1,810,720
2012-04-01 1.57589E+12 2012-04-01 104.0827415 Q2 2012 1,814,628
2012-07-01 1.59536E+12 2012-07-01 104.5453546 Q3 2012 1,826,288
2012-10-01 1.61098E+12 2012-10-01 105.1788905 Q4 2012 1,839,596
2013-01-01 1.63607E+12 2013-01-01 105.9475736 Q1 2013 1,872,136
2013-04-01 1.67053E+12 2013-04-01 105.8155098 Q2 2013 1,881,924
2013-07-01 1.69833E+12 2013-07-01 106.3926058 Q3 2013 1,907,692
2013-10-01 1.75066E+12 2013-10-01 106.4727711 Q4 2013 1,928,372
2014-01-01 1.78916E+12 2014-01-01 108.0058207 Q1 2014 1,958,572
2014-04-01 1.81251E+12 2014-04-01 108.0948485 Q2 2014 1,983,684
2014-07-01 1.85501E+12 2014-07-01 108.6916969 Q3 2014 2,009,164
2014-10-01 1.89181E+12 2014-10-01 108.2081793 Q4 2014 2,009,312
2015-01-01 1.92827E+12 2015-01-01 107.1608189 Q1 2015 1,985,880
2015-04-01 1.95461E+12 2015-04-01 107.4289334 Q2 2015 1,987,968
2015-07-01 2.01857E+12 2015-07-01 107.7699516 Q3 2015 2,005,556
2015-10-01 2.05577E+12 2015-10-01 107.3727069 Q4 2015 2,000,240
2016-01-01 2.09906E+12 2016-01-01 107.1804261 Q1 2016 2,008,964
2016-04-01 2.14464E+12 2016-04-01 107.4862374 Q2 2016 2,009,416
2016-07-01 2.19735E+12 2016-07-01 108.2285573 Q3 2016 2,044,564
2016-10-01 2.2347E+12 2016-10-01 109.4481763 Q4 2016 2,079,080
2017-01-01 2.25137E+12 2017-01-01 110.2520312 Q1 2017 2,115,064
2017-04-01 2.30112E+12 2017-04-01 110.1958834 Q2 2017 2,136,712
2017-07-01 2.29036E+12 2017-07-01 110.2431625 Q3 2017

Solutions

Expert Solution

A. REAL GDP AND MONEY VELOCITY CALCULATED IN THE TABLE (JUST FEW ROWS AS I WAS UNABLE TO PASTE ENTIRE EXCEL)

observation_date

MABMM301CAQ189S (M)

CANGDPDEFQISMEI : GDP DEFLATOR (P)

Quarterly

v62295562 - Gross domestic product at market prices (x 1,000,000) (NOMINAL GDP)

Real gdp (G ): Y = NOMINAL GDP/ GDP DEFLATOR

money velocity series as PY/M

sunstracting money velocity from mean (1.53) = U

U2 = square of U

1/1/1981

2.04E+11

42.69811116

Q1 1981

354,784

8,309,126,337

1.74

0.21

0.04

4/1/1981

2.08E+11

43.66104146

Q2 1981

366,788

8,400,807,396

1.76

0.23

0.05

7/1/1981

2.17E+11

44.62899825

Q3 1981

371,560

8,325,528,570

1.71

0.18

0.03

10/1/1981

2.18E+11

45.29084386

Q4 1981

375,352

8,287,591,222

1.72

0.19

0.04

1/1/1982

2.17E+11

46.60831697

Q1 1982

381,676

8,189,010,563

1.76

0.23

0.05

4/1/1982

2.20E+11

47.57980057

Q2 1982

385,140

8,094,611,482

1.75

0.22

0.05

7/1/1982

2.22E+11

48.37395895

Q3 1982

388,116

8,023,242,431

1.75

0.22

0.05

10/1/1982

2.24E+11

49.3332838

Q4 1982

392,160

7,949,197,171

1.75

0.22

0.05

1/1/1983

2.26E+11

49.71327644

Q1 1983

401,680

8,079,934,150

1.78

0.25

0.06

4/1/1983

2.24E+11

50.26292877

Q2 1983

414,192

8,240,506,674

1.85

0.32

0.10

7/1/1983

2.25E+11

51.27358864

Q3 1983

427,308

8,333,881,270

1.90

0.37

0.13

B. VELOCITY OF MENOY HAS BEEN PLOTTED IN THE GRAPH. Money velocity has definitely fallen over the chart period from 1.7 (in 1980s) to 0.9 (in 2017).

Mean of velocity is: average = sum of all obcervations/number of observations = 223.69/146 = 1.53

Standard deviation of M3 velocity = square root of [{ sum of (all observations – average mean)2 }/number of observations]

à in above table, std deviation= square root of [(sum of U2)/146] à square root {11.69/146} à

square root (0.08) à 0.2828


Related Solutions

Create new series with quarterly money growth rates, inflation rates, velocity growth rates, and real GDP...
Create new series with quarterly money growth rates, inflation rates, velocity growth rates, and real GDP growth rates. Note: The quarterly growth rate of a variable x is the growth rate between two consecutive quarters. STATISTICS CANADA FED. RESERVE BANK OF ST.LOIUS DATABASE v62295562 NOMINAL GDP GDP inplicit price deflator M3 Canada Quarterly v62295562 CANGDPDEFQISMEI MABMM301CAQ189S Q1 1981 354784 42.6981111563270 204311333333.333000 Q2 1981 366788 43.6610414619373 207984000000.000000 Q3 1981 371560 44.6289982488560 216848000000.000000 Q4 1981 375352 45.2908438640580 218082333333.333000 Q1 1982 381676 46.6083169696692...
For this part of the project, you’ll collect data on real GDP and potential GDP measures...
For this part of the project, you’ll collect data on real GDP and potential GDP measures from the FRED website.   – Real GDP (GDPC1) AND Real Potential GDP (GDPPOT), 2007 – current year After that, answer all these questions. 1. What is the conceptual difference between real GDP and potential GDP? In terms of the economy using their resources, what does it mean if real GDP is less than potential GDP? What does it mean if real GDP is greater...
(1) Playing with data: Download quarterly, seasonally adjusted data on US real GDP, personal consumption expenditures,...
(1) Playing with data: Download quarterly, seasonally adjusted data on US real GDP, personal consumption expenditures, and gross private domestic investment for the period 1947q1 - 2010q2. You can download these series from the Bureau of Economic Analysis (BEA) or the St. Louis Fed FRED database. (a) Take the natural logarithm of each series (ì=ln(series)î in Excel) and plot each against time. Which series appears to move around the most? Which series appears to move around the least? (b) The...
New York's  Descriptive Statistics GDP No. of immigrants Mean                       1,343,567 Mean &nb
New York's  Descriptive Statistics GDP No. of immigrants Mean                       1,343,567 Mean             144,464 Standard Error                            53,447 Standard Error                 2,774 Median                       1,339,015 Median             145,839 Mode #N/A Mode #N/A Standard Deviation                          169,013 Standard Deviation                 8,774 Kurtosis                                    (1) Kurtosis                       (0) Skewness                                     0 Skewness                       (0) Range                          499,223 Range               29,868 Minimum                       1,099,234 Minimum             130,010 Maximum                       1,598,457 Maximum             159,878 Sum                     13,435,668 Sum          1,444,635 Count 10 Count 10 This data for past 10 years of New York in terms of GDP and no of. immigrants that have come during...
Does real GDP growth cause unemployment to fall? Collect data on US average quarterly unemployment and...
Does real GDP growth cause unemployment to fall? Collect data on US average quarterly unemployment and US GDP growth the last 10 years.Run a linear regression, and report the results (t-statistic or p-value, R2).Is there a strong causation?
Does real GDP growth cause unemployment to fall? Collect data on US average quarterly unemployment and...
Does real GDP growth cause unemployment to fall? Collect data on US average quarterly unemployment and US GDP growth the last 10 years. Run a linear regression, and report the results (t-statistic or p-value, R2). Is there a strong causation?
Collect annual Data on the following series: real GDP, Government Expenditure, Investment, and Population for 30...
Collect annual Data on the following series: real GDP, Government Expenditure, Investment, and Population for 30 years from an economy of Norway in "Current US dollar, all units and year must be same ' in excel file https://fred.stlouisfed.org/
Create the Descriptive Statistics for "Price" and "SQFT" - Include a 95% Confidence Test on the...
Create the Descriptive Statistics for "Price" and "SQFT" - Include a 95% Confidence Test on the Population Mean Produce a Scatterplot for Price (Dependent) and SQFT (Independent) (PLACE BELOW) Conduct a 95% Hypothesis Test (i.e., ? = .05) to determine if the Mean Price of Houses is greater than $242,512. Use a Population Standard Deviation of $172,000 for your Z-test (i.e., we are determing if the mean has increased from the previous year). Create the Descriptive Statistics for "Price" and...
There are a number of descriptive statistics that could be used to describe data from a...
There are a number of descriptive statistics that could be used to describe data from a study. Name and define at least 5
1) discuss what descriptive statistics should be used to describe the data? 2) discuss what types...
1) discuss what descriptive statistics should be used to describe the data? 2) discuss what types of inferential statistics normally used in educational research? 3) Another issue of qualitative research is its generalizability. Discuss how you are going to ensure that its generalizability is intact? 4) Explain whether we can do sampling for qualitative research. If we can do, explain how we could select the sampling for qualitative research. 5) Discuss how data should be collected to maintain its validity...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT