Question

In: Physics

the two halves of the rod in the figure are uniformly charged to ±q. (figure 1)

The two halves of the rod in the figure are uniformly charged to plus/minus Q as shown.

What is the electric potential at the point indicated by the dot?

 

Solutions

Expert Solution

Given that, the two halves of the rod in the figure are uniformly charged

to plus and minus charge. Since the rod is uniformly charged, the potental

due to first half of the rod is equal to the potential due to second half of the

rod, but both have opposite signs. So, the two potentials will cancel each

other. Hence, the electric potential at the point indicated by the dot is zero,

that is, \(V_{\text {ret }}=0\)

Related Solutions

Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into...
Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into a semicircle of radius R. Find an expression for the electric potential at the center of the semicircle.
A uniformly charged insulating rod of length 13.0 cm is bent into the shape of a...
A uniformly charged insulating rod of length 13.0 cm is bent into the shape of a semicircle as shown in the figure below. The rod has a total charge of -6.50
A uniformly charged insulating rod of length 19.0 cm is bent into the shape of a...
A uniformly charged insulating rod of length 19.0 cm is bent into the shape of a semicircle as shown in the figure below. The rod has a total charge of -6.50
The capacitor in the circuit shown in (Figure 1) is charged to an initial value Q....
The capacitor in the circuit shown in (Figure 1) is charged to an initial value Q. When the switch is closed, it discharges through the resistor. It takes 1.5 seconds for the charge to drop to 12Q. Part A How long does it take to drop from initial charge Q to 14Q? Express your answer to two significant figures and include the appropriate units.
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 15.0 nC are placed side by side, 4.20 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 5.00 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 5.00 nC and a 10-cm-long thin plastic rod uniformly charged to - 5.00 nC are placed side by side, 4.40 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 14.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 14.0 nC and a 10-cm-long thin plastic rod uniformly charged to - 14.0 nC are placed side by side, 4.40 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 7.00 nCnC are placed side by side, 4.10 cmcm apart. What are the electric field strengths E1E1 to E3E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1, E2, and E3?
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 15.0 nC and a 10-cm-long thin plastic rod uniformly charged to -15.0 nC are placed side by side, 3.50 cm apart. What are the electric field strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1 Specify the electric field strength E2 Specify the electric field strength E3
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod...
A 10-cm-long thin glass rod uniformly charged to 7.00 nCnC and a 10-cm-long thin plastic rod uniformly charged to - 7.00 nCnC are placed side by side, 4.10 cmcm apart. What are the electric field strengths E1E1 to E3E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the glass rod along the line connecting the midpoints of the two rods? Specify the electric field strength E1, E2, and E3.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT