Question

In: Physics

Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into...

Charge Q is uniformly distributed along a thin, flexible rod. The rod is then bent into a semicircle of radius R.

Find an expression for the electric potential at the center of the semicircle.

Solutions

Expert Solution

answer)if we make a figure in any way then we can see either x or y component of the field will cancel out  because of the symmetry, so we need to find field along only one direction)

we have the formula for electric fied

E=Kdqsin/R2

we know the formula for linear charge density is given by

=Q/L=dq/ds

dq=ds

ds=Rd

also we have here

2piR=2L

R=L/pi

so now using eqn 1 and replacing the values we get,

E=kds*sin/R2=KRsind/R2=K/Rsind=K/R(-cos)pio

E=K/R(-(-2))

E=2K/R

we have =Q/L

and R=L/pi

E=2KQpi/L2

so answer is

E=2piKQ/L2( if the answer is wrong try -2piKQ/L2 because depending on the figure the field can be negative as well)


Related Solutions

A thin nonconducting rod with a uniform distribution of positive charge Q is bent into a...
A thin nonconducting rod with a uniform distribution of positive charge Q is bent into a circle of radius R (see the figure). The central perpendicular axis through the ring is a z axis, with the origin at the center of the ring. What is the magnitude of the electric field due to the rod at (a) z = 0 and (b) z = ∞? (c) In terms of R, at what positive value of z is that magnitude maximum?...
A thin nonconducting rod with a uniform distribution of positive charge Q is bent into a...
A thin nonconducting rod with a uniform distribution of positive charge Q is bent into a circle of radius R (see the figure). The central perpendicular axis through the ring is a z axis, with the origin at the center of the ring. What is the magnitude of the electric field due to the rod at (a) z = 0 and (b) z = ∞? (c) In terms of R, at what positive value of z is that magnitude maximum?...
- A charge of 22 nC is uniformly distributed along a straight rod of length 13...
- A charge of 22 nC is uniformly distributed along a straight rod of length 13 m that is bent into a circular arc with a radius of 5.6 m. What is the magnitude of the electric field at the center of curvature of the arc? - How much work is required to turn an electric dipole 180o in a uniform electric field of magnitude 42.2 N/C if p = 3.50 × 10-25 C·m and the initial angle is 62.8o....
Positive electric charge Q is distributed uniformly along a line in the shape of a semicircle...
Positive electric charge Q is distributed uniformly along a line in the shape of a semicircle of radius R lying in the upper half of the coordinate plane. Find the electric potential at the origin.
A finite rod of length LLL has total charge qqq, distributed uniformly along its length. The...
A finite rod of length LLL has total charge qqq, distributed uniformly along its length. The rod lies on the x -axis and is centered at the origin. Thus one endpoint is located at (−L/2,0)(−L/2,0), and the other is located at (L/2,0)(L/2,0). Define the electric potential to be zero at an infinite distance away from the rod. Throughout this problem, you may use the constant kkk in place of the expression 14πϵ014πϵ0. Part A What is VAVAV_A, the electric potential...
A charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod....
A charge of uniform linear density 2.20 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell (inner radius = 4.00 cm, outer radius = 9.00 cm). The net charge on the shell is zero. (a) What is the magnitude of the electric field at distance r = 13.0 cm from the axis of the shell? What is the surface charge density on the (b) inner and (c) outer surface of...
A thin spherical shell of radius R and total charge Q distributed uniformly over its surfacce....
A thin spherical shell of radius R and total charge Q distributed uniformly over its surfacce. 1. Plot resistitivity as a function of temperature for some resonable range of temeratures. 2. Design a resistor made of copper that has a resistance of 50 Ohms at room remperature.
A uniformly charged insulating rod of length 13.0 cm is bent into the shape of a...
A uniformly charged insulating rod of length 13.0 cm is bent into the shape of a semicircle as shown in the figure below. The rod has a total charge of -6.50
A uniformly charged insulating rod of length 19.0 cm is bent into the shape of a...
A uniformly charged insulating rod of length 19.0 cm is bent into the shape of a semicircle as shown in the figure below. The rod has a total charge of -6.50
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it....
A line of charge 2.0 m long has 50.0 nC of charge uniformly distributed along it. (a) Calculate the electric field 0.25 m above the center of the line. (b) If the field point were moved from 0.25 m to 1.0 m, by what factor does the field increase/decrease? (c) How does this compare with moving the field point from 0.25 m to 1.0 m away from a point charge?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT