In: Economics
Assignment 1
Willy's Widget, a monopoly, faces the following demand schedule (sales in widgets per month):
Price | Quantity |
80 | 0 |
75 | 10 |
70 | 20 |
65 | 30 |
60 | 40 |
55 | 50 |
50 | 60 |
45 | 70 |
40 | 80 |
35 | 90 |
30 | 100 |
25 | 110 |
20 | 120 |
Calculate marginal revenue over each interval in the schedule. If marginal cost is constant at $40 and fixed cost is $300, what is the profit maximizing level of output? What is the level of profit? Explain your answer using marginal cost and marginal revenue.
Repeat the exercise for MC = $18
Price | Quantity | MC=$40 | TR | MR | MC=$18 | ||||||||
FC | VC | TC | MC | Profit | FC | VC | TC | MC | Profit | ||||
80 | 0 | 300 | 0 | 300 | -300 | 0 | 300 | 0 | 300 | -300 | |||
75 | 10 | 300 | 400 | 700 | 40 | 50 | 750 | 75 | 300 | 180 | 480 | 18 | 270 |
70 | 20 | 300 | 800 | 1100 | 40 | 300 | 1400 | 65 | 300 | 360 | 660 | 18 | 740 |
65 | 30 | 300 | 1200 | 1500 | 40 | 450 | 1950 | 55 | 300 | 540 | 840 | 18 | 1110 |
60 | 40 | 300 | 1600 | 1900 | 40 | 500 | 2400 | 45 | 300 | 720 | 1020 | 18 | 1380 |
55 | 50 | 300 | 2000 | 2300 | 40 | 450 | 2750 | 35 | 300 | 900 | 1200 | 18 | 1550 |
50 | 60 | 300 | 2400 | 2700 | 40 | 300 | 3000 | 25 | 300 | 1080 | 1380 | 18 | 1620 |
45 | 70 | 300 | 2800 | 3100 | 40 | 50 | 3150 | 15 | 300 | 1260 | 1560 | 18 | 1590 |
40 | 80 | 300 | 3200 | 3500 | 40 | -300 | 3200 | 5 | 300 | 1440 | 1740 | 18 | 1460 |
35 | 90 | 300 | 3600 | 3900 | 40 | -750 | 3150 | -5 | 300 | 1620 | 1920 | 18 | 1230 |
30 | 100 | 300 | 4000 | 4300 | 40 | -1300 | 3000 | -15 | 300 | 1800 | 2100 | 18 | 900 |
25 | 110 | 300 | 4400 | 4700 | 40 | -1950 | 2750 | -25 | 300 | 1980 | 2280 | 18 | 470 |
20 | 120 | 300 | 4800 | 5100 | 40 | -2700 | 2400 | -35 | 300 | 2160 | 2460 | 18 | -60 |
FC is equal to the total cost at the zero output level and the
FC=$
TC=TVC+TFC
FC=TC-VC
VC=sum of MC
TR=P*Q
MR of n th unit=(TR of n units -TR of p units)/(n-p)...................n>p
profit=TR-TC
The firm produces at MR=MC or the closet lower MC
when MC=$40
Q=40 units, P=$60 and Profit=$500
When MC=$18
Q=60, P=$50, Profit=$1620