Question

In: Physics

A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter...

A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.09 m/s and the pipe diameter is 10.9 cm. At location 2 the pipe diameter is 14.3 cm. At location 1 the pipe is 9.75 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.

Solutions

Expert Solution

Gravitational acceleration = g = 9.81 m/s2

Density of the liquid = = 1.33 x 103 kg/m3

Fluid pressure in the pipe at location 1 = P1

Diameter of the pipe at location 1 = D1 = 10.9 cm = 0.109 m

Cross-sectional area of the pipe at location 1 = A1 = D12/4

Speed of flow of fluid at location 1 = V1 = 9.09 m/s

Fluid pressure in the pipe at location 2 = P2

Diameter of the pipe at location 2 = D2 = 14.3 cm = 0.143 m

Cross-sectional area of the pipe at location 2 = A2 = D22/4

Speed of flow of fluid at location 2 = V2

Height of location 1 compared to location 2 = H = 9.75 m

Fluid pressure difference at location 2 and location 1 = P = P2 - P1

By continuity equation at location 1 and 2,

A1V1 = A2V2

(D12/4)V1 = (D22/4)V2

D12V1 = D22V2

(0.109)2(9.09) = (0.143)2V2

V2 = 5.28 m/s

By Bernoulli's equation at location 1 and 2,

P = 1.636 x 105 Pa

Fluid pressure difference at location 2 and location 1 = 1.636 x 105 Pa


Related Solutions

Approximately spherical particles of diameter 150? and density 2650 kg/m3 settle through a liquid of density...
Approximately spherical particles of diameter 150? and density 2650 kg/m3 settle through a liquid of density 1097 kg/m3 and dynamic viscosity 3.8 mPa s. The volume fraction of particles is 30% in a container of internal diameter 2 cm Calculate: a)The absolute settling velocity that is apparent to the stationary observer in the lab frame. b)The slip velocity (Us) between solid and liquid phases. c) The superficial velocity of the particles in the lab frame.
A brine solution with a density of 1230 kg/m3 moves through a constricted pipe in steady,...
A brine solution with a density of 1230 kg/m3 moves through a constricted pipe in steady, ideal flow. At the lower point shown in the figure below, the pressure is P1 = 2.00 ✕ 104 Pa, and the pipe diameter is 7.00 cm. At another point y = 0.40 m higher, the pressure is P2 = 1.25 ✕ 104 Pa and the pipe diameter is 3.50 cm. (a) Find the speed of flow (in m/s) in the lower section. (b)...
a) Water (Densitywater = 1,000 kg/m3) flows through a pipe that narrows. At point A it...
a) Water (Densitywater = 1,000 kg/m3) flows through a pipe that narrows. At point A it is determined that the water flows with a velocity of VA = 93 m/s. At point B it is determined that the water flows with a velocity of VB = 193 m/s.What is the nagnitude of the difference in pressure between points A and B. b) Two trains pass each other. Train A is traveling 36 m/s east. Train B is traveling 23 m/s...
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as...
A liquid (ρ = 1.65 g/cm3) flows through a horizontal pipe of varying cross section as in the figure below. In the first section, the cross-sectional area is 10.0 cm2, the flow speed is 281 cm/s, and the pressure is 1.20  105 Pa. In the second section, the cross-sectional area is 4.50 cm2. The flow within a horizontal tube is depicted by five lines. The tube extends from left to right, with the left end wider than the right end. The...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe...
A water is flowing through a circular varying diameter pipe. The water completely fills the pipe at all its sections. 1- What is the water velocity of the water at the first section if you know that the diameter of the pipe at this section= 22 cm and the water is flowing at a rate of 2.5 m3/s? 2- What is the diameter of the pipe at the second section if you know that the water velocity at this section...
Benzene (876.5 kg/m3) flows into a 10.3 cm diameter, inlet pipe (a.k.a Zone 1) at a...
Benzene (876.5 kg/m3) flows into a 10.3 cm diameter, inlet pipe (a.k.a Zone 1) at a pressure of 1.948 bar. The liquid then flows through a 6.2 cm diameter pipe at a pressure of 1.001 atm situated 1.4 m above the inlet pipe, a.k.a Zone 2. a) Calculate the flow speed of the Benzene in Zone 2. b) Calculate the volume flow rate of the Benzene in either Zone
Water (1,000 kg/m3) flows into a 10.2 cm diameter, inlet pipe (a.k.a Zone 1) at a...
Water (1,000 kg/m3) flows into a 10.2 cm diameter, inlet pipe (a.k.a Zone 1) at a pressure of 1.671E5 Pa. The liquid then flows out of a 8.7 cm diameter, open faucet situated 1.6 m above the inlet pipe, a.k.a Zone 2. a) Calculate the flow speed of the Water in Zone 2. b) Calculate the volume flow rate of the Water in either Zone.  
A 1-mm diameter sphere (density=7900 kg/m3) is dropped into a tank of oil (density=900 kg/m3). The...
A 1-mm diameter sphere (density=7900 kg/m3) is dropped into a tank of oil (density=900 kg/m3). The sphere develops a terminal speed of 0.25 cm/s, what is the oil's viscosity? You may assume a small Reynolds number. Show your work.
1)10 m3 /h of water flows through a pipe with 100 mm inside diameter. Calculate the...
1)10 m3 /h of water flows through a pipe with 100 mm inside diameter. Calculate the flow velocity inside this pipe. ? 2) A river discharges 100 m3 of water to the sea every 2 seconds. What is the flow-rate of this river expressed in m3/s?
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the...
A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 0.5 cm. Liquid flows through the first segment at a speed of 9.0 m/s . What is the speed in the second segment? What is the speed in the third segment? What is the volume flow rate through the pipe? for the love of god please give me the right answer. everyone has given me the wrong answers so far and i'm pissed off.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT